

DEVELOPER GUIDE

PART C – DEVELOPMENT STEPS

Warning: This is a redacted version of the SIDES Developer Guide and is

NOT the latest version. For development, log into the Members Site and

obtain the latest version.

Version: 2.3

Date: February 22, 2017

Copyright © 2017, National Association of State Workforce Agencies.

All Rights Reserved.

 2

Revision History

Date Version Description Author

8/20/2010 1.0 Version 1.0 SIDES Team

9/27/2010 1.1 Updated: Part C – Development

Steps.

Added discussion on

Combined.xsd to document. See

Sections 3.3, 3.3.1.4, and 4.6.1.

Enhanced the description of a

GUID. See Section 4.2.2.

Enhanced discussion on

certification test data files to

indicate that connectors may need

to edit certification test data files.

See Section 8.1.1.1.1.

SIDES Team

12/09/2010 1.2 Updated: Part C – Development

Steps.

Under section 9.1, Common

Mistakes, two new sections were

added.

Section 9.1.7 clarifies he

interpretation of numeric fields

used to store money values.

Section 9.1.8 provides guidance on

populating the

StateEmployerAccountNbr field so

employers and TPAs can use this

data to look up employer

information in their automated

systems.

SIDES Team

4/7/2011 2.0 Added Earnings Verification

requirements, modified

requirements to be specific to their

exchange, added requirements

from CCB#9 (C-2.3.3.1-4, 2.3.3.1-

5, and 2.3.3.1-6, added Model

Connector.

SIDES Team

5/20/2011 2.1 Updated Part C. Added Employer

Model Connector; Jax-WS Model

Connector and .Net Model

Connector; Corrected SOAP

header information relating to the

Earnings Verification exchange

SIDES Team

 3

Date Version Description Author

11/17/2011 2.2 Updated Part B.

Added section C-2.10 SEW and

added in the requirement to specify

the size of the SEW custom logo to

C-2.10.1.

Identified requirements met

through the use of the SIDES

Model Connector.

SIDES Team

2/22/2017 2.3 Updated SIDES Logo SIDES Team

 4

TABLE OF CONTENTS

1 INTRODUCTION .. 8

2 INITIAL SETUP INSTRUCTIONS .. 10

2.1 URLs.. 10

3 A – COLLECT AND ARRANGE DATA ... 11

3.1 Data Requirements .. 11

3.2 XML .. 12
3.2.1 Sample State Separation Request ... 12
3.2.2 Sample Employer/TPA Separation Response ... 13

3.3 Sample State Earnings Verification Request ... 14

3.4 Sample State Earnings Verification Response ... 14

3.5 XSD ... 17
3.5.1 Separation Information XSD .. 17

3.5.1.1 XSD Files .. 18
3.5.2 Earnings Verification XSD ... 18

3.5.2.1 XSD Files .. 19
3.5.3 Null/Empty Values ... 19
3.5.4 Dates ... 19
3.5.5 MTOM .. 20
3.5.6 Backfilled Data ... 20

3.6 File Size ... 22

3.7 Business Rules .. 22

4 B – BUILD THE CONNECTOR: PREPARING THE MESSAGE 24

4.1 Messaging Overview – Post, Pull, and Push .. 24
4.1.1 Post ... 24
4.1.2 Pull.. 24
4.1.3 Push .. 25

 5

4.1.4 SOAP .. 25

4.2 Messaging Concepts ... 26
4.2.1 Unique ID ... 26

4.2.1.1 State Unique IDs ... 26
4.2.1.2 Employer/TPA Unique IDs ... 26

4.2.2 File and Record GUIDs .. 27
4.2.3 SOAP Transaction Number .. 27
4.2.4 Broker Record Transaction Number ... 27
4.2.5 Message Codes ... 28

4.2.5.1 Post-Acknowledgement Message Codes .. 28
4.2.5.2 Pull-Response Message Codes .. 28
4.2.5.3 Pull Acknowledgement Codes .. 28

4.3 SOAP Custom Headers.. 29
4.3.1 State Post .. 30

4.3.1.1 State Post to Central Broker .. 31
4.3.1.2 State Post to Central Broker – SIDES Employer Website ... 31
4.3.1.3 Central Broker Acknowledgement to State Post ... 32

4.3.2 State Pull ... 33
4.3.2.1 State Pull from Central Broker – Regular Pull .. 33
4.3.2.2 State Pull from Central Broker – Re-Pull by StateSOAPTransactionNumber 35
4.3.2.3 State Pull from Central Broker – Re-Pull by Date .. 38

4.3.3 Employer/TPA Post .. 40
4.3.3.1 Employer/TPA Post to Central Broker .. 40
4.3.3.2 Central Broker Acknowledgement to Employer/TPA Post ... 41

4.3.4 Employer/TPA Pull .. 42
4.3.4.1 Employer/TPA Pull from Central Broker – Regular Pull ... 42
4.3.4.2 Employer/TPA Pull from Central Broker – Re-Pull by EmployerTPASOAPTransactionNumber 44
4.3.4.3 Employer/TPA Pull from Central Broker – Re-Pull by Date .. 47

4.4 SOAP Payload .. 50
4.4.1 Separation Information ... 50

4.4.1.1 Post Payload .. 50
4.4.1.2 Pull Payload .. 55

4.4.2 Earnings Verification .. 64
4.4.2.1 Post Payload .. 64
4.4.2.2 Pull Payload .. 70

4.5 SOAP Action ... 80

4.6 WSDL .. 81
4.6.1 WSDL XSD .. 82
4.6.2 State WSDL .. 82

4.6.2.1 State Post WSDL .. 82
4.6.2.2 State Pull WSDL ... 83

4.6.3 Employer/TPA WSDL ... 84
4.6.3.1 EmployerTPA Post WSDL ... 84
4.6.3.2 EmployerTPA Pull WSDL .. 85

5 C – BUILD THE CONNECTOR: ... 87

6 D - CONNECT WITH THE CENTRAL BROKER: SENDING THE MESSAGE 88

 6

6.1 Sending a message .. 88

6.2 Sample SOAP message sent ... 88

6.3 Acknowledgements ... 88

6.4 Non-Broker Returns .. 88

7 E – CONNECT WITH THE CENTRAL BROKER: TESTING CONNECTOR
SOFTWARE ... 90

7.1 Connector Responsibility... 90

7.2 Tools .. 91
7.2.1 Model Connectors .. 91

7.2.1.1 Setup State Model Connector.. 96
7.2.1.2 Log Files – POST .. 111
7.2.1.3 Log Files – PULL ... 113
7.2.1.4 Setup Employer Model Connector .. 119
7.2.1.5 Log Files – POST .. 131
7.2.1.6 Log Files – PULL ... 133

7.2.2 Model Connector – Spring ... 137
7.2.2.1 Spring-WS Model Connector .. 137
7.2.2.2 Employer/TPA Model Connector – Spring WS .. 146

7.2.3 Model Connector - .Net (C#) .. 154
7.2.3.1 State Model Connector – .Net (C#) ... 154
7.2.3.2 Employer Model Connector – .Net (C#) ... 165

7.2.4 Model Connector – JAX-WS.. 174
7.2.4.1 State Model Connector – JAX-WS ... 174
7.2.4.2 Employer/TPA Model Connector – JAX-WS ... 182

7.2.5 BRPT – Business Rule Processor Tool... 189
7.2.5.1 BRPT Interfaces .. 190
7.2.5.2 Return from Business Rules Processing Tool ... 194
7.2.5.3 Example Invocation of the Business Rules Processing Tool .. 195

8 F – CONNECT WITH THE CENTRAL BROKER: CERTIFYING CONNECTOR
SOFTWARE ... 197

8.1 Certification .. 197
8.1.1 Certification Information .. 198

8.1.1.1 Step 1 - Download Test Suite.. 199
8.1.1.2 Step 2 - Conduct Preliminary Connector Certification Testing .. 206
8.1.1.3 Step 3 - Submit the Spreadsheet .. 211
8.1.1.4 Step 4 - Conduct Final Connector Certification Test .. 211

9 COMMON MISTAKES, THINGS TO REMEMBER, KEY DEVELOMENT PITFALLS
 ... 213

9.1 Common Mistakes .. 213
9.1.1 Invalid To: and/or From: .. 213
9.1.2 Connector Not a Participant ... 213
9.1.3 Invalid SOAP Action .. 213

 7

9.1.4 Incorrect/Missing Security ... 213
9.1.5 Central Broker Not Having Up-to-Date REDACTED Information ... 214
9.1.6 Date/Time on Server Not Accurate .. 214
9.1.7 Interpretation of Standard Format for Money Fields .. 214
9.1.8 State Employer Account Number ... 214

9.2 Things to Remember .. 214
9.2.1 Existing Business System Modifications .. 214
9.2.2 Error Handling .. 215

9.2.2.1 XML Injection .. 215

9.3 Key Development Pitfalls .. 218

10 LIST OF FIGURES ... 219

11 LIST OF TABLES .. 220

 8

1 INTRODUCTION

This document is the final part of the comprehensive Developer Guide package. Part C contains

technical guidance to assist you in building the connector to communicate with the Central

Broker. Please note that it is very important that you have addressed all of the issues outlined in

Part B – Connector Requirements before you start with this part.

The document is composed of the following:

 Initial Setup Instructions

 A – Collect and Arrange Data

o Data Requirements

o XML (includes samples)

o XSD

o File Size

o Business Rules

 B - Preparing the Message

o Messaging Overview – Post, Pull, and Push

o Messaging Concepts

o SOAP Customer Headers

o SOAP Payload

o SOAP Actions

o WSDL

 C - Securing the Message

o REDACTED

 D - Sending the Message

o Sending a message

o Sample SOAP Message

o Acknowledgements

o Non-broker Returns

 E - Testing the Connector Software

o Connector Responsibility

o Tools

 Model Connectors

 Business Rule Processor Tool (BRPT)

 F – Certifying the Connector Software

o Step 1 - Download test suite

o Step 2 - Conduct preliminary connector certification testing

o Step 3 - Submit the Spreadsheet

 9

o Step 4 – Conduct Final Connector Certification Test

 Common Mistakes, Things to Remember, Key Development Pitfalls

 List of Tables

Each section contains specific information and examples of how to ensure you are able to

successfully execute each process.

For the connector to interface with the SIDES Central Broker, the connector must obtain their

data from their backend system. This initial step is outside of the scope of the developer guide.

Once you obtain the data you need to put it into XML as prescribed by the SIDES XSDs. The

development steps documented herein will guide your development of a SIDES compliant

connector.

 10

2 INITIAL SETUP INSTRUCTIONS

To connect to the SIDES Central Broker, the connector needs to obtain and configure the

appropriate URL to access the SIDES test and SIDES production environment. Public keys must

be exchanged between the connector and the Central Broker. The SIDES Broker

Administrator must set up the connector within the SIDES Admin Site.

2.1 URLs

The URLs used by the connectors for all messaging with the Central Broker are:

 REDACTED [Separation Information production]

 REDACTED [Separation Information test]

 REDACTED [Earnings Verification production]

 REDACTED [Earnings Verification test]

2.2 Public Key Exchange - REDACTED

REDACTED

 11

3 A – COLLECT AND ARRANGE DATA

Prior to collecting and arranging data, the connector must perform data analysis and mapping

between their backend system, the Separation Information Exchange Format, and the Earnings

Verification Exchange Format (hereafter known only as Exchange Format). Once the analysis is

complete, the connector must extract data from their backend system and generate an XML file,

which will be packaged and delivered to the Central Broker. This section: describes SIDES data

requirements; introduces XML, XSDs; defines the date data type used by SIDES; introduces how

attachments are transmitted to the Central Broker using Message Transmission Optimization

Mechanism (MTOM); explains the backfilled data; specifies the SIDES file size; and articulates

the business rules that must be followed to participate in SIDES.

3.1 Data Requirements

The data required for the requests and responses is a set of predetermined data elements, each

having its own individual requirements along with its interaction with other elements. The

request and response data elements (the standard format) can be found in the SIDES

Implementation Guide. This Development Steps guide contains a technical discussion of the

information provided for each field in the Separation Information Exchange Format and the

Earnings Verification Exchange Format.

Note: For the latest version of Separation Information Exchange Format or

Earnings Verification Exchange Format, please visit the SIDES Website

(http://sides.itsc.org), and obtain the SIDES Implementation Guide, which

contains the Separation Information Exchange Format and Earnings

Verification Exchange Format.

There are two tables in the Exchange Formats. The first table outlines the data requirements for

the Request sent by a State. The second table outlines the data requirements for the Response

sent by an employer or TPA in response to the Request.

Table 1 describes the information specified for each request and response data element listed in

the Exchange Format.

The responsibility of the development team for a SIDES connector is to (a) ensure that, given the

information in the Exchange Format, the connecting system can populate all of this data with the

development team’s current back-end systems or future planned ones and (b) ensure their client

can pass all validations and business rules before they deploy to production.

Table 1 – Exchange Format

Column Name Definition

Seq. Number
The “Sequence Number” is the identifier for the data element. It

helps identify which data element is being discussed.

Data Element Name The “Data Element Name” is the name of the data element.

Data Element Description
The “Data Element Description” is the description of the data

element.

http://sides.itsc.org/

 12

Column Name Definition

Type and/or Format
The “Type and/or Format” is the format of the data element (i.e.

character, a numeric, a date or a base64Binary data field).

Field Size

The “Field Size” is the size of the data element. Depending on

what type of element it is, it may be a maximum size (2000

character string), or it may be the exact size (10 character date).

Field Required / Optional

“Field Required / Optional” tells whether the field must have an

answer for the data element. There are three types of data

elements: Required, Optional, and Conditional.

 Required means that an answer must be filled in.

 Optional means that an answer should only be filled in if

it makes sense for the state, employer, or TPA to fill in

that answer.

 Conditional means that an answer may be required or

optional depending on the answers to other data

elements. (See Business Rules for more information.)

Business Rules

“Business Rules” are the directives that must be met when filling

in this data element. These can include the reasons that will

make a conditional element required or restrictions on a date

field.

Validation
“Validation” is a check on the data to make sure that the data is

in a consistent form and can be readable by all participants.

Comments/Notes “Comments” are general comments on the data element.

Values

The “Values” column contains all the values that a data element

may have for those data elements that are restricted to a set of

values.

3.2 XML

XML was selected as the medium to implement the SIDES Exchange Format specification for the

transfer of the data between states, employers, and TPAs. XML allows the data to be defined in a

clear and concise manner.

State, employer, and TPA connectors must implement clients that can correctly communicate

using the SIDES messaging specification, per the current Requirements Baseline, system design,

and as elucidated in this guide.

3.2.1 Sample State Separation Request

<StateSeparationRequest>

<StateRequestRecordGUID>50000000000000000000000000003364</StateRequestR

ecordGUID>

<SSN>000128475</SSN>

<ClaimEffectiveDate>2009-06-04</ClaimEffectiveDate>

<ClaimNumber>378620</ClaimNumber>

<StateEmployerAccountNbr>0064560</StateEmployerAccountNbr>

<EmployerName>JC PENNEY COMPANY INC</EmployerName>

<FEIN>794741844</FEIN>

 13

<TypeofEmployerCode>3</TypeofEmployerCode>

<TypeofClaimCode>1</TypeofClaimCode>

<BenefitYearBeginDate>2009-06-04</BenefitYearBeginDate>

<RequestingStateAbbreviation>UT</RequestingStateAbbreviation>

<UIOfficePhone>8015264400</UIOfficePhone>

<UIOfficeFax>8015269394</UIOfficeFax>

<ClaimantLastName>FUKBPHM</ClaimantLastName>

<ClaimantFirstName>ELSA</ClaimantFirstName>

<WagesWeeksNeededCode>NA</WagesWeeksNeededCode>

<ClaimantSepReasonCode>99</ClaimantSepReasonCode>

<RequestDate>2009-06-07</RequestDate>

<ResponseDueDate>2009-06-17</ResponseDueDate>

<FormNumber>606C</FormNumber>

 </StateSeparationRequest>

3.2.2 Sample Employer/TPA Separation Response

<EmployerTPASeparationResponse>

<StateRequestRecordGUID>00000000000000000000000000003364</StateRequestR

ecordGUID>

<BrokerRecordTransactionNumber>2001753</BrokerRecordTransactionNumber>

<SSN>000128475</SSN>

<ClaimEffectiveDate>2009-06-04</ClaimEffectiveDate>

<ClaimNumber>378620</ClaimNumber>

<StateEmployerAccountNbr>0064560</StateEmployerAccountNbr>

<ClaimantNameWorkedAsForEmployer>Elsa

LKJFGRE2</ClaimantNameWorkedAsForEmployer>

<ClaimantJobTitle>Customer Service Associate</ClaimantJobTitle>

<SeasonalEmploymentInd>N</SeasonalEmploymentInd>

<EmployerReportedClaimantFirstDayofWork>2005-10-

11</EmployerReportedClaimantFirstDayofWork>

<EmployerReportedClaimantLastDayofWork>2008-10-

14</EmployerReportedClaimantLastDayofWork>

<EffectiveSeparationDate>2008-10-14</EffectiveSeparationDate>

<TotalEarnedWagesNeededInd>2</TotalEarnedWagesNeededInd>

<TotalEarnedWages>0</TotalEarnedWages>

<TotalWeeksWorked>0</TotalWeeksWorked>

<WagesEarnedAfterClaimEffectiveDate>0</WagesEarnedAfterClaimEffectiveDa

te>

<NumberOfHoursWorkedAfterClaimEffectiveDate>0</NumberOfHoursWorkedAfter

ClaimEffectiveDate>

<AverageWeeklyWage>0</AverageWeeklyWage>

<EmployerSepReasonCode>6</EmployerSepReasonCode>

<VoluntarySepReasonCode>1</VoluntarySepReasonCode>

<ClaimantActionsToAvoidQuitInd>N</ClaimantActionsToAvoidQuitInd>

<ContinuingWorkAvailableInd>Y</ContinuingWorkAvailableInd>

<VoluntarySepReasonComments>The claimant quit without giving JCPenney a

reason.</VoluntarySepReasonComments>

<PreparerTypeCode>E</PreparerTypeCode>

<PreparerTelephoneNumberPlusExt>9724312108</PreparerTelephoneNumberPlus

Ext>

<PreparerContactName>Jay Johns</PreparerContactName>

<PreparerTitle>Project Manager</PreparerTitle>

<PreparerFaxNbr>9725312108</PreparerFaxNbr>

<PreparerEmailAddress>sample@jcpenney.com</PreparerEmailAddress>

</EmployerTPASeparationResponse>

 14

3.3 Sample State Earnings Verification Request

<StateEarningsVerificationRequestCollection xsi:schemaLocation="https://

REDACTED schemas EarningsVerificationRequest.xsd" xmlns="https://

REDACTED /schemas" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <StateEarningsVerificationRequest>

 <StateEarningsVerificationRequestRecordGUID>AAA530000000000000000000000

00003</StateEarningsVerificationRequestRecordGUID>

 <RequestingStateAbbreviation>ST</RequestingStateAbbreviation>

 <UIOfficeName>Office Name</UIOfficeName>

 <UIOfficePhone>5555555555</UIOfficePhone>

 <UIOfficeFax>5555555554</UIOfficeFax>

 <UIOfficeEmailAddress>james.madison@state.gov</UIOfficeEmailAddress>

 <StateEmployerAccountNbr>1234567890</StateEmployerAccountNbr>

 <FEIN>123456789</FEIN>

 <EmployerName>ACME</EmployerName>

 <SSN>311111334</SSN>

 <ClaimantLastName>Lastname</ClaimantLastName>

 <ClaimantFirstName>Firstname</ClaimantFirstName>

 <ClaimantMiddleInitial>M</ClaimantMiddleInitial>

 <ClaimantSuffix>JR</ClaimantSuffix>

 <NumberofWeeksRequested>5</NumberofWeeksRequested>

 <EarningsVerificationWeekBeginDate>2010-08-

01</EarningsVerificationWeekBeginDate>

 <EarningsVerificationWeekEndDate>2010-09-

04</EarningsVerificationWeekEndDate>

 <EarningsVerificationComments>This is a comment field for this Earnings

Verification Request</EarningsVerificationComments>

 <RequestDate>2010-10-14</RequestDate>

 <EarningsStatusCode>3</EarningsStatusCode>

 <TipsStatusCode>1</TipsStatusCode>

 <CommissionStatusCode>1</CommissionStatusCode>

 <BonusStatusCode>1</BonusStatusCode>

 <VacationStatusCode>1</VacationStatusCode>

 <SickLeaveStatusCode>1</SickLeaveStatusCode>

 <HolidayStatusCode>3</HolidayStatusCode>

 <SeveranceStatusCode>3</SeveranceStatusCode>

 <WagesInLieuStatusCode>4</WagesInLieuStatusCode>

 <EarningsVerificationResponseCommentIndicator>1</EarningsVerificationRe

sponseCommentIndicator>

 <ResponseDueDate>2010-10-28</ResponseDueDate>

 <EarningsVerificationSourceCode>9</EarningsVerificationSourceCode>

 </StateEarningsVerificationRequest>

</StateEarningsVerificationRequestCollection>

3.4 Sample State Earnings Verification Response

<?xml version="1.0"?>

<EmployerTPAEarningsVerificationResponseCollection

xsi:schemaLocation="https:// REDACTED /schemas

EarningsVerificationResponse.xsd" xmlns="https:// REDACTED /schemas"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <EmployerTPAEarningsVerificationResponse>

 <!-- Backfilled -->

 15

 <StateEarningsVerificationRequestRecordGUID>AAA530000000000000000000000

00003</StateEarningsVerificationRequestRecordGUID>

 <!-- Backfilled -->

 <BrokerRecordTransactionNumber>5447</BrokerRecordTransactionNumber>

 <!-- Backfilled -->

 <RequestingStateAbbreviation>ST</RequestingStateAbbreviation>

 <!-- Backfilled -->

 <UIOfficeName>Office Name</UIOfficeName>

 <!-- Backfilled -->

 <StateEmployerAccountNbr>1234567890</StateEmployerAccountNbr>

 <!-- Backfilled -->

 <FEIN>123456789</FEIN>

 <CorrectedFEIN>987654321</CorrectedFEIN>

 <!-- Backfilled -->

 <EmployerName>ACME</EmployerName>

 <CorrectedEmployerName>Fly By Night</CorrectedEmployerName>

 <!-- Backfilled -->

 <SSN>311111334</SSN>

 <ClaimantNameWorkedAsForEmployer>John Q

Public</ClaimantNameWorkedAsForEmployer>

 <!-- Backfilled -->

 <NumberofWeeksRequested>5</NumberofWeeksRequested>

 <!-- Backfilled -->

 <EarningsVerificationWeekBeginDate>2010-08-

01</EarningsVerificationWeekBeginDate>

 <!-- Backfilled -->

 <EarningsVerificationWeekEndDate>2010-09-

04</EarningsVerificationWeekEndDate>

 <!-- 1 - Claimaint works, 20 - Never Employed Here, 21 - TPA does not

represent Employer -->

 <ClaimantEmployerWorkRelationshipCode>1</ClaimantEmployerWorkRelationsh

ipCode>

 <!-- 1 Yes, has earnings, 2 - did not have earnings (100% Sales), 9 -

No Work -->

 <EmployerEarningsCode>1</EmployerEarningsCode>

 <FirstDayWorkedinPeriod>2010-08-01</FirstDayWorkedinPeriod>

 <!-- 1 for Yes, 2 for No -->

 <StillWorkingCode>2</StillWorkingCode>

 <LastDayWorked>2010-09-04</LastDayWorked>

 <!-- 1 - Layoff, 2 - Fired, 3 - Vol Quit, 4 - Other -->

 <EmployerSepReasonCode>1</EmployerSepReasonCode>

 <!-- When Request = 1 or (2 with Work/Relationship = 20/21 or Earnings

Code = 9) -->

 <EarningsVerificationResponseComment>This employee was let go during

the time period</EarningsVerificationResponseComment>

 <WeeklyEarningsVerification>

 <WeekBeginDate>2010-08-01</WeekBeginDate>

 <WeekEndDate>2010-08-07</WeekEndDate>

 <HoursWorked>15:00</HoursWorked>

 <!-- See Request values for required or not for all below -->

 <AmountEarnedForWeek>500.00</AmountEarnedForWeek>

 <EarningsPaidDate>2010-08-21</EarningsPaidDate>

 <HolidayAmountPaidForWeek>60.00</HolidayAmountPaidForWeek>

 <HolidayPaidDate>2010-08-07</HolidayPaidDate>

 <SeveranceAmountPaidForWeek>70.00</SeveranceAmountPaidForWeek>

 16

 <SeverancePaidDate>2010-08-07</SeverancePaidDate>

 <WagesInLieuAmountPaidForWeek>80.00</WagesInLieuAmountPaidForWeek>

 <WagesInLieuPaidDate>2010-08-07</WagesInLieuPaidDate>

 </WeeklyEarningsVerification>

 <WeeklyEarningsVerification>

 <WeekBeginDate>2010-08-08</WeekBeginDate>

 <WeekEndDate>2010-08-14</WeekEndDate>

 <HoursWorked>15:00</HoursWorked>

 <!-- See Request values for required or not for all below -->

 <AmountEarnedForWeek>500.00</AmountEarnedForWeek>

 <EarningsPaidDate>2010-08-21</EarningsPaidDate>

 <HolidayAmountPaidForWeek>60.00</HolidayAmountPaidForWeek>

 <HolidayPaidDate>2010-08-14</HolidayPaidDate>

 <SeveranceAmountPaidForWeek>70.00</SeveranceAmountPaidForWeek>

 <SeverancePaidDate>2010-08-14</SeverancePaidDate>

 <WagesInLieuAmountPaidForWeek>80.00</WagesInLieuAmountPaidForWeek>

 <WagesInLieuPaidDate>2010-08-14</WagesInLieuPaidDate>

 </WeeklyEarningsVerification>

 <WeeklyEarningsVerification>

 <WeekBeginDate>2010-08-15</WeekBeginDate>

 <WeekEndDate>2010-08-21</WeekEndDate>

 <HoursWorked>15:00</HoursWorked>

 <!-- See Request values for required or not for all below -->

 <AmountEarnedForWeek>500.00</AmountEarnedForWeek>

 <EarningsPaidDate>2010-08-21</EarningsPaidDate>

 <HolidayAmountPaidForWeek>60.00</HolidayAmountPaidForWeek>

 <HolidayPaidDate>2010-08-21</HolidayPaidDate>

 <SeveranceAmountPaidForWeek>70.00</SeveranceAmountPaidForWeek>

 <SeverancePaidDate>2010-08-21</SeverancePaidDate>

 <WagesInLieuAmountPaidForWeek>80.00</WagesInLieuAmountPaidForWeek>

 <WagesInLieuPaidDate>2010-08-21</WagesInLieuPaidDate>

 </WeeklyEarningsVerification>

 <WeeklyEarningsVerification>

 <WeekBeginDate>2010-08-22</WeekBeginDate>

 <WeekEndDate>2010-08-28</WeekEndDate>

 <HoursWorked>101:00</HoursWorked>

 <!-- See Request values for required or not for all below -->

 <AmountEarnedForWeek>500.00</AmountEarnedForWeek>

 <EarningsPaidDate>2010-08-28</EarningsPaidDate>

 <HolidayAmountPaidForWeek>60.00</HolidayAmountPaidForWeek>

 <HolidayPaidDate>2010-08-28</HolidayPaidDate>

 <SeveranceAmountPaidForWeek>70.00</SeveranceAmountPaidForWeek>

 <SeverancePaidDate>2010-08-28</SeverancePaidDate>

 <WagesInLieuAmountPaidForWeek>80.00</WagesInLieuAmountPaidForWeek>

 <WagesInLieuPaidDate>2010-08-28</WagesInLieuPaidDate>

 </WeeklyEarningsVerification>

 <WeeklyEarningsVerification>

 <WeekBeginDate>2010-08-29</WeekBeginDate>

 <WeekEndDate>2010-09-04</WeekEndDate>

 <HoursWorked>5:00</HoursWorked>

 <!-- See Request values for required or not for all below -->

 <AmountEarnedForWeek>500.00</AmountEarnedForWeek>

 <EarningsPaidDate>2010-09-04</EarningsPaidDate>

 <HolidayAmountPaidForWeek>60.00</HolidayAmountPaidForWeek>

 <HolidayPaidDate>2010-09-04</HolidayPaidDate>

 <SeveranceAmountPaidForWeek>70.00</SeveranceAmountPaidForWeek>

 17

 <SeverancePaidDate>2010-09-04</SeverancePaidDate>

 <WagesInLieuAmountPaidForWeek>80.00</WagesInLieuAmountPaidForWeek>

 <WagesInLieuPaidDate>2010-09-04</WagesInLieuPaidDate>

 </WeeklyEarningsVerification>

 <!-- E - Employer, T - TPA -->

<PreparerTypeCode>T</PreparerTypeCode>

 <PreparerCompanyName>ABC TPA</PreparerCompanyName>

 <PreparerTelephoneNumberPlusExt>5555555556</PreparerTelephoneNumberPlus

Ext>

 <PreparerContactName>Mrs Sue Herman</PreparerContactName>

 <PreparerTitle>Claims Administrator</PreparerTitle>

 <PreparerFaxNbr>5555555557</PreparerFaxNbr>

 <PreparerEmailAddress>sue.herman@abctpa.com</PreparerEmailAddress>

 <!-- Backfilled -->

 <EarningsVerificationSourceCode>9</EarningsVerificationSourceCode>

 </EmployerTPAEarningsVerificationResponse>

</EmployerTPAEarningsVerificationResponseCollection>

3.5 XSD

On the client connector, as well as the Central Broker, the request and response files must

validate against the XML schema definition.

In order to implement the XML for SIDES data, the Exchange Formats were translated into XML

Schema Definition (XSD) files. These XSD files are used in SIDES to validate the state request

and the employer or TPA response.

Any violation of the XSD will result in an error indicating that the request or response was not

successfully processed and must be fixed by the sender and resubmitted to SIDES.

3.5.1 Separation Information XSD

There are three files that make up this definition for Separation Information.

Two main files make up the schema:

 SeparationRequest.xsd

 SeparationResponse.xsd

One support file contains elements that are defined in both files.

 RequestResponseTypeElements.xsd

There is one XSD file, combined.xsd, which is used to include other XSD files in the system,

and it does not contain any additional information. This file is required due to a problem

accessing the https:// REDACTED /schemas namespace in multiple files within the Java

libraries used in SIDES. The combined.xsd file is used internally by the Central Broker to allow

XSD checks to take place on all the SOAP messages and records sent in by the connectors. The

combined.xsd file may be used by connector software, but it is not necessary if the technology

and libraries used in the connectors’ implementation do not require it.

 18

 Combined.xsd

3.5.1.1 XSD Files

3.5.1.1.1 SeparationRequest.xsd

See REDACTED for the latest copy of the SeparationRequest.xsd.

3.5.1.1.2 SeparationResponse.xsd

See REDACTED for the latest copy of the SeparationResponse.xsd.

3.5.1.1.3 RequestResponseTypeElements.xsd

See REDACTED for the latest copy of the RequestResponseTypeElements.xsd.

3.5.1.1.4 combined.xsd

See REDACTED for the latest copy of the combined.xsd.

3.5.2 Earnings Verification XSD

There are three files that make up this definition for Earnings Verification.

Two main files make up the schema:

 EarningsVerificationRequest.xsd

 EarningsVerificationResponse.xsd

One support file contains elements that are defined in both files.

 EarningsVerificationTypeElements.xsd

The RequestResponseTypeElements.xsd mentioned above in Separation Information is reused..

There is one XSD file, combined.xsd, which is used to include other XSD files in the system,

and it does not contain any additional information. This file is required due to a problem

accessing the https:// REDACTED /schemas namespace in multiple files within the Java

libraries used in SIDES. The combined.xsd file is used internally by the Central Broker to allow

XSD checks to take place on all the SOAP messages and records sent in by the connectors. The

REDACTED file may be used by connector software, but it is not necessary if the technology

and libraries used in the connectors’ implementation do not require it.

 19

3.5.2.1 XSD Files

3.5.2.1.1 EarningsVerificationRequest.xsd

See REDACTED for the latest copy of the EarningsVerificationRequest.xsd.

3.5.2.1.2 EarningsVerificationResponse.xsd

See REDACTED for the latest copy of the EarningsVerificationResponse.xsd.

3.5.2.1.3 EarningsVerificationTypeElements.xsd

See REDACTED for the latest copy of the EarningsVerificationTypeElements.xsd.

3.5.2.1.4 combined.xsd

See REDACTED for the latest copy of the combined.xsd.

3.5.3 Null/Empty Values

In many instances, the Exchange Format and the XSD indicate that an element can be null or is

not required. There are two main ways to represent null values in XML (strings being a special

case):

 One is to include xsi:nil=”true” if the element in question is supposed to be null

 The other is to not include the element

For SIDES, the way to indicate null values is to not include the element. Therefore, any element

that does not have a value must not appear in the XML file sent to the Central Broker.

The ClaimantFirstName and ClaimantLastName data elements in the Separation Request are

required. Yet, there may not be a value that can be placed in them (in the case where the claimant

does not have either a first or last name); if this occurs, a space must be sent in as the element

value.

3.5.4 Dates

The XSD defines all of the Date data types as xs:date. This data type allows the definition of a

year, month, and a day to define the particular date. The Exchange Format date is restricted to

just the year, month and day (10 characters total). It is important to keep the xs:date field to just

the year, month, and day.

 20

There are two exceptions to this rule where the full date/time is used. This is in the case of the

Broker Effective Date field and the DateStartedReceivingTransmission/

DateFinishedReceivingTransmission fields in the message acknowledgements. The Broker

Effective Date indicates when a record was received in the Central Broker and requires the use

of the date and time fields in xs:dateTime to record the exact time of record receptions and

transmissions by the Broker. The DateStartedReceivingTransmission/

DateFinishedReceivingTransmission are part of the acknowledgements and give the receiver the

date and time box around the transmission. The time zones for each of these elements will

always be in Greenwich Mean Time or an offset thereof.

3.5.5 MTOM

Message Transmission Optimization Mechanism, or MTOM, is a mechanism for transmitting

large binary attachments with SOAP messages as raw bytes, allowing for smaller messages.

Binary content often has to be re-encoded to be sent as text data with SOAP messages. MTOM

allows more efficient sending of binary data in a SOAP request or response. MTOM provides a

way of efficiently transmitting binary data such as images, PDF files, and MS Word documents,

between connectors.

The basis of MTOM used is the data type base64Binary (http://www.w3.org/TR/2004/PER-

xmlschema-2-20040318/#base64Binary).

This is defined in the Separation Request and Separation Response XSD as part of the

attachment occurrence:

 <xs:element name="AttachmentData" type="xs:base64Binary" />

Connectors must use the base64Binary data type for their request/response attachments.

3.5.6 Backfilled Data

There are some backfilled data required in the response. This data shall come out of the request

record in the exact form it is received. Central Broker business rule checks determine if the data

matches between the request and response on these fields. If there is any difference, the Central

Broker rejects the record.

The fields that must be backfilled are given in Table 2 and 3.

Table 2 – Separation Information Backfilled Data

Element Name

Separation

Information

Exchange Format

Sequence Number

Notes

StateRequestRecordGUID B-59

http://www.w3.org/TR/2004/PER-xmlschema-2-20040318/#base64Binary
http://www.w3.org/TR/2004/PER-xmlschema-2-20040318/#base64Binary

 21

Element Name

Separation

Information

Exchange Format

Sequence Number

Notes

BrokerRecordTransactionNumber B-60

SSN B-1

ClaimEffectiveDate B-2

ClaimNumber B-3 If this was not included in the

separation request, then it must not

be included in the separation

response.

StateEmployerAccountNbr B-4

Table 3 – Earnings Verification Backfilled Data

Element Name

Earnings

Verification

Exchange

Format

Sequence

Number

Notes

StateEarningsVerificationRequestRecordGUID ER-1

BrokerRecordTransactionNumber ER-2

RequestingStateAbbreviation ER-3

UIOfficeName ER-4

StateEmployerAccountNbr ER-5

FEIN ER-6

EmployerName ER-8

SSN ER-10

NumberofWeeksRequested ER-12

 22

Element Name

Earnings

Verification

Exchange

Format

Sequence

Number

Notes

EarningsVerificationWeekBeginDate ER-13

EarningsVerificationWeekEndDate ER-14

EarningsVerificationSourceCode ER-32

3.6 File Size

States may include multiple requests in a single XML file per employer or TPA to which they

want to send requests. This file may be up to 8MB in size, including all encoded attachments,

prior to encryption. If states have more than 8MB of data for that employer or TPA, they must

create multiple files.

Similarly, multiple employer/TPA responses to a state may be packaged into a single file within

the 8MB limit. If employers or TPAs have more than 8MB of data for a state (including encoded

attachments but prior to encryption), they must also create multiple files.

3.7 Business Rules

The Business Rules column in the Exchange Formats contains additional business rule validation

logic (“edits”) that cannot be defined in an XSD. To keep the data in SIDES consistent, the

Central Broker uses Java code to check every request and response record that is sent to it. The

Central Broker verifies that all of the business rules are followed. If it detects any of these rules

have been violated, it passes back an error code and message to the calling client that indicates

the rules that were violated.

An example of a Java implemented business rule (rather than a validation that can be

implemented within the XSD) is given below for the Separation Information exchange. This

example logs error 219 (see Part B – Connector Requirements) if the associated business rule is

violated.

 if ((sep.getWorkingAllAvailableHoursInd() == null)

 && sep.getEmployerSepReasonCode()!= null

 && (sep.getEmployerSepReasonCode().intValue() == 11))

 {

 // Error

 23

 errorList.add(new BRValidationError(219));

 logger.debug("Found error (219) in

WorkingAllAvailableHoursInd - it is null when

EmployerSepReasonCode equals 11");

 }

In order to create a connector, the software must implement and execute all of the validations

and business rules specified in the Exchange Formats prior to sending the request or response to

the Broker.

 24

4 B – BUILD THE CONNECTOR: PREPARING THE MESSAGE

Prior to transmittal of the request or response data to the Central Broker, the connector must

extract the data from its backend system and generate an XML file. Once the XML file has been

created, the file must be packaged and delivered to the Central Broker. This section describes

the messaging framework that a connector can use to deliver messages to and receive messages

from the Central Broker.

4.1 Messaging Overview – Post, Pull, and Push

The communication between the Central Broker and the state, employer, and TPA connectors

is accomplished through SOAP over HTTPS using an HTTP request/response pattern.

There are three operations supported by the Central Broker – “Post,” “Pull,” and “Push.”

4.1.1 Post

In the Post operation, the connecting client instigates communication with the Broker. The

connectors “Post” their request and response files to the Central Broker (HTTP request) and

receive an acknowledgement in return (HTTP response).

Post Transaction:

1. Connector posts its request file (if a state), or response file (if an employer or TPA) to

the Broker in an HTTP request

2. Connector receives receipt of file in an HTTP response from the Broker

4.1.2 Pull

In the Pull operation, the connector asks for any available records from the Central Broker

(HTTP request), receives the waiting records (HTTP response) and sends back an

acknowledgement in return (HTTP request). Because there are three communications that take

place with this action, the process is broken up into two distinct HTTP request/response

transactions:

Pull Transaction (1):

1. Connector asks for its files (responses if a state, requests if an employer or TPA) in an

HTTP request to the Broker

2. Connector receives its files in an HTTP response from the Broker

Pull Transaction (2):

3. Connector acknowledges its receipt of file in an HTTP request to the Broker

 25

Note: There is no HTTP response to the receipt HTTP transaction

(number 3 above). The Broker simply records the reception of the

receipt HTTP request or logs an error. (There is no “receipt to the

receipt.”)

4.1.3 Push

In the “Push” transaction, the Broker instigates communication to the employer or TPA client.

Immediately following each state “Post,” the Broker processes the incoming request file and then

sends it to the employer or TPA connector Web service instantaneously.

The “Push” transaction requires that the employer or TPA have a listening Web service and the

Broker be configured to operate in Push mode for that employer or TPA.

Push Transaction:

1. Broker pushes request file to employer or TPA in an HTTP request to the employer or

TPA connector, which has been implemented and configured to listen for Broker pushes

2. Broker receives receipt of a pushed request file in a HTTP response from the

employer/TPA

The “Push” transaction only occurs from Broker to employer or TPA for request files from the

states. There is no equivalent Broker-to-state “Push” for the “automatic” delivery of employer or

TPA response files to the states at this time. State connectors must use “Pull” to retrieve their

response files.

Employers and TPAs may choose to implement Pull or Push for their response files. This is a

free choice for each employer and TPA depending upon the process they wish to implement for

their backend systems.

The employer and TPA choice for Pull or Push transaction has no effect on the state clients. It

affects only the configuration of the Broker and whether a particular employer or TPA has a

client that implements Pull or Push mode. The state posts its requests to the Broker in the same

way, regardless of whether the employer or TPA receives them from the Broker via Pull or Push.

4.1.4 SOAP

SOAP is a protocol for exchange of information in a decentralized, distributed environment. It is

an XML-based protocol that consists of three parts: (1) an envelope that defines a framework for

describing what is in a message and how to process it, (2) a set of encoding rules for expressing

instances of application-defined data types, and (3) a convention for representing remote

procedure calls and responses.

SOAP messages are fundamentally one-way transmissions from a sender to a receiver. But

SOAP messages are often combined to implement patterns such as the request/response pattern,

where it provides for SOAP response messages to be delivered as HTTP responses, using the

 26

same connection as the inbound request. This is the pattern used to accomplish the file

transfer/acknowledgement scheme, as overviewed in Sections 4.1.1, 4.1.2, and 4.1.3.

4.2 Messaging Concepts

There are a few concepts that need to be discussed before getting further into the messaging

process for SIDES.

4.2.1 Unique ID

Each state, employer, and TPA will be assigned a Unique ID for both the SIDES production

environment and the SIDES test environment. Please contact the SIDES Business Manager to

obtain your Unique IDs for SIDES. A complete list of Unique IDs is maintained on the SIDES

Website (http://SIDES.itsc.org). The Unique IDs of all the current participants are as follows:

4.2.1.1 State Unique IDs

Table 4 lists the participating states and their Unique IDs:

Table 4 - Unique IDs of Current Participating States

State Unique ID

REDACTED

4.2.1.2 Employer/TPA Unique IDs

Table 5 lists the participating employers and TPAs and their Unique IDs. The Employer/TPA

Unique ID is a ‘BR’ followed by a unique nine digit number. The Broker Administrator

assigns the nine digit number.

Table 5 - Unique IDs of Current Participating Employer/TPAs

Employer/TPA Unique ID

REDACTED

http://sides.itsc.org/

 27

4.2.2 File and Record GUIDs

SIDES uses a Globally Unique Identifier (GUID). A GUID is a special type of identifier used in

software applications to provide a unique reference number. The value is represented as a 32

character hexadecimal character string, such as {21EC2020-3AEA-1069-A2DD-

08002B30309D}. The primary purpose of the GUID is to have a totally unique number. Ideally,

a GUID will never be generated twice by any computer or group of computers in existence. The

total number of unique keys (2128 or 3.4×1038) is so large that the probability of the same number

being generated twice is extremely small. The SIDES team suggests GUIDs be generated using

utilities or function calls available within your development

framework.

GUIDs are created by connectors for each “Post” transaction to

the Broker and are used on both the XML file level (File

GUIDs) and the XML individual record level (Record GUIDs).

The File GUIDs are used on an entire XML file to uniquely

identify that file.

The Record GUIDs are used within the XML on each record to

uniquely identify that record. Record GUIDs should be unique

with the domain of the connector and not just that file.

There are many GUID creation methods depending on the

language and technology in use. Many of them will create the

GUID with a ‘-‘ in a few places such that it actually comes out

to be 36 characters long. Developers of connectors must be

aware that as the GUID for SIDES is defined as a 32-character

string, the ‘-‘ must be stripped before its use.

4.2.3 SOAP Transaction Number

The Central Broker uses a SOAP transaction number (StateSOAPTransactionNumber and

EmployerTPASOAPTransactionNumber) as a unique identifier for a file as part of a “Pull”

transaction. These can be thought of like a FedEx or UPS tracking number. These numbers can

be used in calls to re-Pull a particular file in case of loss.

4.2.4 Broker Record Transaction Number

The BrokerRecordTransactionNumber is given to a single request record on entry into the

system and is generated by the Broker. This number uniquely identifies a request, even if

multiple copies of the same record are passed through the system (in this case, each record gets

its own BrokerRecordTransactionNumber). The BrokerRecordTransactionNumber must be used

on the response in order to connect the response with a particular request and, therefore, must be

consumed by employer and TPA connectors.

NOTE: Because of the

small chance that a GUID

will be repeated by different

states, employer/TPAs must

ensure that both the State

Request Record GUID AND

the State abbreviation (or

something similar) be used

when determining if a record

is a duplicate.

NOTE: States must not

reuse a GUID unless it is was

used more than 10 years ago.

GUIDs may only be reused

for a resend of a request that

was rejected by the Central

Broker.

 28

4.2.5 Message Codes

Each time an acknowledgement is sent, a message code is sent with it to indicate the status of the

transaction. These are the transmission-level message codes that go in the SOAP header as

discussed below in Section 4.3 - SOAP Custom Headers.

4.2.5.1 Post-Acknowledgement Message Codes

Table 6 – Post-Acknowledgement Message Codes

Code Message Notes

1 File Success Successful Transmission; no

rejects

2 File Failure File size too large; no

records in file; all records

failed

3 File Success with Rejected

Records

Rejected records included

4.2.5.2 Pull-Response Message Codes

Table 7 – Pull-Response Message Codes

Code Message Notes

1 File Contained in Payload The file is contained in the

payload of the SOAP

Message

2 End Of Files There are no files available

to download

4.2.5.3 Pull Acknowledgement Codes

Table 8 - Pull Acknowledgement Codes

Code Message Notes

1 File Success Successful transmission

2 File Failure Did not receive file; any file

 29

problems

4.3 SOAP Custom Headers

This section discusses the contents of the custom SOAP headers of the various transactions that

occur in the Post, Pull, and Push processes.

The SOAP headers are one part of a SOAP message. The SOAP messages used contain

additional custom information in the SOAP headers. This information utilizes the messaging

concepts discussed in the previous Section 4.2 Messaging Concepts. Each type of transaction has

its own requirements and elements as discussed below.

The custom SOAP header information provided by the connecting client to the Broker is for

routing purposes, security purposes and, in the case of the Pull, the type of Pull required.

The custom SOAP header information provided by the Broker to the client is for security

purposes and, in the case of the Pull, for re-Pulling purposes.

The SOAP headers provided for each type of transaction are listed below.

 State Post (Section 4.3.1)

o State Post to Broker (for routing to specified employer or TPA)

o State Post to Broker (for routing to the SIDES Employer Web site)

o Broker Acknowledgement to state Post

 State Pull from Broker – Regular Pull (Section 4.3.2.1)

o State Request to Broker (Regular Pull)

o Broker Response to Request (Regular Pull)

o State Acknowledgement to Broker (Regular Pull)

 State Pull from Broker – Re-Pull by StateSOAPTransactionNumber (Section 4.3.2.2)

o State Request to Broker (Re-Pull by StateSOAPTransactionNumber)

o Broker Response to Request (Re-Pull by StateSOAPTransactionNumber)

o State Acknowledgement to Broker (Re-Pull by StateSOAPTransactionNumber)

 State Pull from Broker – Re-Pull by Date (Section 4.3.2.3)

o State Request to Broker (Re-Pull by Date)

 30

o Broker Response to Request (Re-Pull by Date)

o State Acknowledgement to Broker (Re-Pull by Date)

 Employer/TPA Post (Section 4.3.3)

o Employer/TPA Post to Broker

o Broker Acknowledgement to Employer/TPA Post

 Employer/TPA Pull from Broker – Regular Pull (Section 4.3.4.1)

o Employer/TPA Request to Broker (Regular Pull)

o Broker Response to Request (Regular Pull)

o Employer/TPA Acknowledgement to Broker (Regular Pull)

 Employer/TPA Pull from Broker – Re-Pull by EmployerTPASOAPTransactionNumber

(Section 4.3.4.2)

o Employer/TPA Request to Broker (Re-Pull by

EmployerTPASOAPTransactionNumber)

o Broker Response to Request (Re-Pull by

EmployerTPASOAPTransactionNumber)

o Employer/TPA Acknowledgement to Broker (Re-Pull by

EmployerTPASOAPTransactionNumber)

 Employer/TPA Pull from Broker – Re-Pull by Date (Section 4.3.4.3)

o Employer/TPA Request to Broker (Re-Pull by Date)

o Broker Response to Request (Re-Pull by Date)

o Employer or TPA Acknowledgement to Broker (Re-Pull by Date)

4.3.1 State Post

The following sections contain the custom header elements for a state Post to the Broker. Note

that the tables below that describe messages going to the Broker have a column that indicates

which fields are required. Tables that describe messages being returned from the Broker do not

have this column, as there is no responsibility on the client connector to populate these fields.

The client connector must handle whatever is returned by the Broker according to the header

specification.

 31

4.3.1.1 State Post to Central Broker

Table 9 - State Post to Broker

Header Element Required Definition Example

To Y The Unique ID of the employer or TPA

to which the message is intended

Will always be ‘BR’ followed by nine

digits

BR000000003

From Y The Unique ID of the state where the

message originated

UT

StateRequestFileG

UID

Y The state-generated GUID applied to this

message that can uniquely identify this

file

Size is 32 hexadecimal digits

A42A1FBDAC9549

AC7D8D3F45E404

0319

4.3.1.1.1 SOAP Example - State Post to Central Broker:

<To xmlns="https://REDACTED/schemas">BR000000003</To>

<From xmlns="https://REDACTED/schemas">UT</From>

<StateRequestFileGUID

xmlns="https://REDACTED/schemas">
A42A1FBDAC9549AC7D8D3F45E4040319</StateRequestFileGUID>

4.3.1.2 State Post to Central Broker – SIDES Employer Website

Table 10 - State Post to Broker - SIDES Employer Website

Header Element Required Definition Example

To Y The FEIN of the employer or TPA to

which the message is intended

Size is nine numeric digits

123456789

From Y The Unique ID of the state where the

message originated

NJ

 32

Header Element Required Definition Example

StateRequestFileG

UID

Y The state-generated GUID applied to this

message that can uniquely identify this

file

Size is 32 hexadecimal digits

A42A1FBDAC9549

AC7D8D3F45E404

0319

Separation

Information Only

SEIN

Y The SEIN of the employer or TPA to

which the message is intended. For those

states that do not use the SEIN, this must

equal the FEIN

Size is up to 20 digits

123456789

PIN Y The PIN to which the state wants to

assign this request for this employer or

TPA

Size is up to 20 characters

435222169876

4.3.1.2.1 SOAP Example - State Post to Central Broker – SIDES Employer Website:

<To xmlns="https://REDACTED/schemas">123456789</To>

<From xmlns="https://REDACTED/schemas">NJ</From>

<StateRequestFileGUID

xmlns="https://REDACTED /schemas">
A42A1FBDAC9549AC7D8D3F45E4040319</StateRequestFileGUID>

<SEIN xmlns="https://REDACTED/schemas">123456789</From>

<PIN xmlns="https://REDACTED/schemas">435222169876</From>

4.3.1.3 Central Broker Acknowledgement to State Post

Table 11 - Broker Acknowledgement to State Post

Header Element Definition Example

To The Unique ID of the state that sent the Post UT

From Will always be “Broker” Broker

StateRequestFileGUI

D

The state-generated GUID applied to the message

that uniquely identifies the file sent in to the Broker.

This is for verification purposes

A42A1FBDAC9549

AC7D8D3F45E404

0319

 33

Header Element Definition Example

Size is 32 hexadecimal digits

MessageCode The acknowledgement code applied to the message

that indicates success or failure of the entire

transmission. See 4.2.5 for further information on

Message Codes.

Size is one digit

1

4.3.1.3.1 SOAP Example - Central Broker Acknowledgement to State Post:

<To xmlns="https:// REDACTED/schemas">UT</To>

<From xmlns="https:// REDACTED/schemas">Broker</From>

<StateRequestFileGUID xmlns="https://REDACTED

/schemas">A42A1FBDAC9549AC7D8D3F45E4040319</StateRequestFileGUID>

<MessageCode xmlns="https:// REDACTED/schemas">1</MessageCode>

4.3.2 State Pull

Because of the nature of the HTTP request-response pattern, there is one request and one

response for each HTTP request-response transaction. Because three messages are sent between

the connector and the Broker on a Pull, there will be two request-response patterns needed to

accomplish the full Pull operation. (See Section 4.1.2 for an overview of this issue.)

4.3.2.1 State Pull from Central Broker – Regular Pull

The following sections contain the custom header elements for a regular state Pull from the

Broker.

4.3.2.1.1 State Request to Central Broker (Regular Pull)

Table 12 - State Request to Broker (Regular Pull)

Header Element Required Definition Example

To Y Broker Broker

From Y The Unique ID of the state where this

message originated

UT

PullCollection Y Signifies one of three Pull transactions

desired by the state

1 - indicates a regular Pull

1

 34

Size is one digit

4.3.2.1.1.1 SOAP Example - State Request to Central Broker (Regular Pull):

 <To xmlns="https://REDACTED/schemas">Broker</To>

 <From xmlns="https://REDACTED/schemas">UT</From>

 <PullCollection xmlns="https://REDACTED/schemas">1</PullCollection>

4.3.2.1.2 Central Broker Response to Request (Regular Pull)

Table 13 - Broker Response to Request (Regular Pull)

Header Element Definition Example

To The Unique ID of the state that requested the

Pull

UT

From The Unique ID of the employer or TPA from

which these response records originated

BR000000001

StateSOAPTransactionNu

mber

The unique number assigned to this file by the

Broker

3565

MessageCode The acknowledgement code applied to the

message that indicates success or failure of the

entire transmission. See 4.2.5 for further

information on Message Codes.

Size is one digit

1

4.3.2.1.2.1 SOAP Example – Central Broker Response to Request (Regular Pull):

<To xmlns="https://REDACTED/schemas">UT</To>

<From xmlns="https:// REDACTED/schemas">BR000000001</From>

<StateSOAPTransactionNumber xmlns="https://

REDACTED/schemas">3565</StateSOAPTransactionNumber>

<MessageCode xmlns="https://REDACTED/schemas">1</MessageCode>

4.3.2.1.3 State Acknowledgment to Central Broker (Regular Pull)

 35

Table 14 - State Acknowledgement to Broker (Regular Pull)

Header Element Required Definition Example

To Y Broker Broker

From Y The Unique ID of the state from

which this message originated

UT

StateSOAPTransactionNumber Y The

StateSOAPTransactionNumber

that was returned in the

response for the regular pull

3565

MessageCode Y The acknowledgement code

applied to the message that

indicates success or failure of

the entire transmission. See

4.2.5 for further information on

Message Codes.

Size is one digit

1

4.3.2.1.3.1 SOAP Example – State Acknowledgment to Central Broker (Regular Pull):

<To xmlns="https:// REDACTED/schemas">Broker</To>

<From xmlns="https:// REDACTED/schemas">UT</From>

<StateSOAPTransactionNumber xmlns="https://

REDACTED/schemas">3565</StateSOAPTransactionNumber>

<MessageCode xmlns="https://REDACTED/schemas">1</MessageCode>

4.3.2.2 State Pull from Central Broker – Re-Pull by StateSOAPTransactionNumber

The following sections contain the custom header elements for a State Re-Pull by

StateSOAPTransactionNumber from the Broker.

4.3.2.2.1 State Request to Central Broker (Re-Pull by StateSOAPTransactionNumber)

Table 15 - State Request to Broker (Re-Pull by StateSOAPTransactionNumber)

Header Element Required Definition Example

To Y Broker Broker

 36

Header Element Required Definition Example

From Y The Unique ID of the state from

which this message originated

UT

PullCollection Y Signifies one of three Pull

transactions desired by the state

2 - Indicates a re-Pull by

StateSOAPTransactionNumber

Size is one digit

2

StateSOAPTransactionNumber Y The

StateSOAPTransactionNumber

that was returned in the response

for the regular pull on a previous

Pull request. This specifies the

file the State wants to re-Pull

3565

4.3.2.2.1.1 SOAP Example - State Request to Central Broker (Re-Pull by

StateSOAPTransactionNumber):

<To xmlns="https:// REDACTED /schemas">Broker</To>

<From xmlns="https:// REDACTED /schemas">UT</From>

<PullCollection xmlns="https:// REDACTED /schemas">2</PullCollection>

<StateSOAPTransactionNumber xmlns="https:// REDACTED

/schemas">3565</StateSOAPTransactionNumber>

4.3.2.2.2 Central Broker Response to Request (Re-Pull by

StateSOAPTransactionNumber)

Table 16 - Broker Response to Request (Re-Pull by StateSOAPTransactionNumber)

Header Element Definition Example

To The Unique ID of the state from which this

message originated

UT

From The Unique ID of the employer or TPA from

which these response records originated

BR000000001

StateSOAPTransactionNu

mber

The StateSOAPTransactionNumber that was

requested by the state

3565

 37

Header Element Definition Example

MessageCode The acknowledgement code applied to the

message that indicates success or failure of the

entire transmission. See 4.2.5 for further

information on Message Codes.

Size is one digit

1

4.3.2.2.2.1 SOAP Example - Central Broker Response to Request (Re-Pull by

StateSOAPTransactionNumber):

<To xmlns="https:// REDACTED /schemas">UT</To>

<From xmlns="https:// REDACTED /schemas">BR000000001</From>

<StateSOAPTransactionNumber xmlns="https:// REDACTED

/schemas">3565</StateSOAPTransactionNumber>

<MessageCode xmlns="https:// REDACTED /schemas">1</MessageCode>

4.3.2.2.3 State Acknowledgment to Central Broker (Re-Pull by

StateSOAPTransactionNumber)

Table 17 -State Acknowledgment to Broker (Re-Pull by StateSOAPTransactionNumber)

Header Element Required Definition Example

To Y Broker Broker

From Y The Unique ID of the state from

which this message originated

UT

StateSOAPTransactionNumber Y The

StateSOAPTransactionNumber

that was returned in the

response for the regular pull

3565

MessageCode Y The acknowledgement code

applied to the message that

indicates success or failure of

the entire transmission. See

4.2.5 for further information on

Message Codes.

1

 38

Header Element Required Definition Example

Size is one digit

4.3.2.2.3.1 SOAP Example - State Acknowledgment to Central Broker (Re-Pull by

StateSOAPTransactionNumber):

<To xmlns="https:// REDACTED /schemas">Broker</To>

<From xmlns="https:// REDACTED /schemas">UT</From>

<StateSOAPTransactionNumber xmlns="https:// REDACTED

/schemas">3565</StateSOAPTransactionNumber>

<MessageCode xmlns="https:// REDACTED /schemas">1</MessageCode>

4.3.2.3 State Pull from Central Broker – Re-Pull by Date

The following sections contain the custom header elements for a State Re-Pull by Date from the

Broker.

4.3.2.3.1 State Request to Central Broker (Re-Pull by Date)

Table 18 - State Request to Broker (Re-Pull by Date)

Header Element Required Definition Example

To Y Broker Broker

From Y The Unique ID of the state from

which this message originated

UT

PullCollection Y Signifies one of three Pull

transactions desired by the state

3 - Indicates a re-Pull by Date

Size is one digit

3

StateSOAPTransactionNumber Y This must not be included for

the first call by Date. On

subsequent calls, this must be

filled in with the

NextStateSOAPTransactionNu

mber returned on the previous

call in order to collect all

records on the date specified

 39

4.3.2.3.1.1 SOAP Example - State Request to Central Broker (Re-Pull by Date):

<To xmlns="https:// REDACTED /schemas">Broker</To>

<From xmlns="https:// REDACTED /schemas">UT</From>

<PullCollection xmlns="https:// REDACTED /schemas">3</PullCollection>

4.3.2.3.2 Central Broker Response to Request (Re-Pull by Date)

Table 19 - Broker Response to Request (Re-Pull by Date)

Header Element Definition Example

To Broker Broker

From The Unique ID of the state from which

this message originated

UT

StateSOAPTransactionNumber The first StateSOAPTransactionNumber

that was returned in the response for the

regular pull on that date

3565

MessageCode The acknowledgement code applied to

the message that indicates success or

failure of the entire transmission. See

4.2.5 for further information on Message

Codes.

Size is one digit

1

NextStateSoapTransactionNumber The next StateSOAPTransactionNumber

that was returned in the response for the

regular pull on that date. This header

will not be included in the response when

the last file in the data range is being

returned, indicating there are no more

files to be sent.

3566

4.3.2.3.2.1 SOAP Example - Central Broker Response to Request (Re-Pull by Date):

<To xmlns="https:// REDACTED /schemas">UT</To>

<From xmlns="https:// REDACTED /schemas">BR000000001</From>

<StateSOAPTransactionNumber xmlns="https:// REDACTED

/schemas">3565</StateSOAPTransactionNumber>

<MessageCode xmlns="https:// REDACTED /schemas">1</MessageCode>

<NextStateSOAPTransactionNumber xmlns="https:// REDACTED

/schemas">3566</NextStateSOAPTransactionNumber>

 40

4.3.2.3.3 State Acknowledgment to Central Broker (Re-Pull by Date)

Table 20 - State Acknowledgement to Broker (Re-Pull by Date)

Header Element Required Definition Example

To Y Broker Broker

From Y The Unique ID of the state from

which this message originated

UT

StateSOAPTransactionNu

mber

Y The StateSOAPTransactionNumber

that was returned in the response

for the regular pull

3565

MessageCode Y The acknowledgement code applied

to the message that indicates

success or failure of the entire

transmission. See 4.2.5 for further

information on Message Codes.

Size is one digit.

1

4.3.2.3.3.1 SOAP Example - State Acknowledgment to Central Broker (Re-Pull by Date)

<To xmlns="https:// REDACTED /schemas">Broker</To>

<From xmlns="https:// REDACTED /schemas">UT</From>

<StateSOAPTransactionNumber xmlns="https:// REDACTED

/schemas">3565</StateSOAPTransactionNumber>

<MessageCode xmlns="https:// REDACTED /schemas">1</MessageCode>

4.3.3 Employer/TPA Post

The following sections contain the custom header elements for an employer or TPA Post to the

Broker.

4.3.3.1 Employer/TPA Post to Central Broker

Table 21 - Employer/TPA Post to Broker

Header Element Required Definition Example

To Y The Unique ID of the state to which this UT

 41

Header Element Required Definition Example

message is intended

From Y The Unique ID of the employer or PA

from which the message originated

Will always be ‘BR’ followed by nine

digits

BR000000003

EmployerTPAResp

onseFileGUID

Y The employer or TPA-generated GUID

applied to this message that can uniquely

identify this file

Size is 32 hexadecimal digits

A42A1FBDAC9549

AC7D8D3F45E404

0319

4.3.3.1.1 SOAP Example - Employer/TPA Post to Central Broker:

<To xmlns="https:// REDACTED /schemas"> UT </To>

<From xmlns="https:// REDACTED /schemas"> BR000000003</From>

<EmployerTPAResponseFileGUID

xmlns="https:// REDACTED

/schemas">A42A1FBDAC9549AC7D8D3F45E4040319</EmployerTPAResponseFileGUID>

4.3.3.2 Central Broker Acknowledgement to Employer/TPA Post

Table 22 - Broker Acknowledgement to Employer/TPA Post

Header Element Definition Example

To The Unique ID of the employer or TPA that sent the

Post

BR000000003

From Will always be “Broker.” Broker

EmployerTPARespon

seFileGUID

The employer or TPA-generated GUID applied to

the message that uniquely identifies the file sent to

the Broker. This is for verification purposes.

Size is 32 hexadecimal digits

A42A1FBDAC9549

AC7D8D3F45E404

0319

MessageCode The acknowledgement code applied to the message

that indicates success or failure of the entire

transmission. See 4.2.5 for further information on

Message Codes.

Size is one digit

1

 42

4.3.3.2.1 SOAP Example - Central Broker Acknowledgement to Employer/TPA Post:

<To xmlns="https:// REDACTED /schemas">BR000000003</To>

<From xmlns="https:// REDACTED /schemas">Broker</From>

<EmployerTPAResponseFileGUID xmlns="https:// REDACTED

/schemas">A42A1FBDAC9549AC7D8D3F45E4040319</EmployerTPAResponseFileGUID>

<MessageCode xmlns="https:// REDACTED /schemas">1</MessageCode>

4.3.4 Employer/TPA Pull

Because of the nature of the HTTP request-response pattern, there is one request and one

response for each HTTP request-response transaction. Because three messages are sent between

the connector and the Broker on a Pull, there will be two request-response patterns needed to

accomplish the full Pull operation. (See Section 4.1.2 for an overview of this issue.)

4.3.4.1 Employer/TPA Pull from Central Broker – Regular Pull

The following sections contain the custom header elements for a regular state Pull from the

Broker.

4.3.4.1.1 Employer/TPA Request to Central Broker (Regular Pull)

Table 23 - Employer/TPA Request to Broker (Regular Pull)

Header Element Required Definition Example

To Y Broker Broker

From Y The Unique ID of the employer or TPA

from which this message originated

BR000000003

PullCollection Y Signifies one of three Pull transactions

desired by the employer or TPA

1 - Indicates a regular Pull

Size is one digit

1

4.3.4.1.1.1 SOAP Example - Employer/TPA Request to Central Broker (Regular Pull):

 <To xmlns="https:// REDACTED /schemas">Broker</To>

 <From xmlns="https:// REDACTED /schemas"> BR000000003</From>

 <PullCollection xmlns="https:// REDACTED /schemas">1</PullCollection>

4.3.4.1.2 Central Broker Response to Request (Regular Pull)

 43

Table 24 - Broker Response to Request (Regular Pull)

Header Element Definition Example

To The Unique ID of the employer or TPA that

requested the Pull

BR000000003

From The Unique ID of the state from which these

request records originated.

UT

EmployerTPASOAPTrans

actionNumber

The unique number assigned to this file by the

Broker

7350

MessageCode The acknowledgement code applied to the

message that indicates success or failure of the

entire transmission. See 4.2.5 for further

information on Message Codes.

Size is one digit

1

4.3.4.1.2.1 SOAP Example – Central Broker Response to Request (Regular Pull):

<To xmlns="https:// REDACTED /schemas"> BR000000003</To>

<From xmlns="https:// REDACTED /schemas">UT</From>

<EmployerTPASOAPTransactionNumber xmlns="https:// REDACTED

/schemas">7350</EmployerTPASOAPTransactionNumber>

<MessageCode xmlns="https:// REDACTED /schemas">1</MessageCode>

4.3.4.1.3 Employer/TPA Acknowledgment to Central Broker (Regular Pull)

Table 25 - Employer/TPA Acknowledgment to Broker (Regular Pull)

Header Element Required Definition Example

To Y Broker Broker

From Y The Unique ID of the employer or

TPA from which this message

originated

BR000000003

EmployerTPASOAPTrans

actionNumber

Y The

EmployerTPASOAPTransactionNu

mber that was returned in the

response for the regular Pull

7350

 44

Header Element Required Definition Example

MessageCode Y The acknowledgement code applied

to the message that indicates

success or failure of the entire

transmission. See 4.2.5 for further

information on Message Codes.

Size is one digit

1

4.3.4.1.3.1 SOAP Example – Employer/TPA Acknowledgment to Central Broker (Regular

Pull):

<To xmlns="https:// REDACTED /schemas">Broker</To>

<From xmlns="https:// REDACTED /schemas"> BR000000003</From>

<EmployerTPASOAPTransactionNumber xmlns="https:// REDACTED

/schemas">7350</EmployerTPASOAPTransactionNumber>

<MessageCode xmlns="https:// REDACTED /schemas">1</MessageCode>

4.3.4.2 Employer/TPA Pull from Central Broker – Re-Pull by

EmployerTPASOAPTransactionNumber

The following sections contain the custom header elements for an employer or TPA Re-Pull by

EmployerTPASOAPTransactionNumber from the Broker.

4.3.4.2.1 Employer/TPA Request to Central Broker (Re-Pull by

EmployerTPASOAPTransactionNumber)

Table 26 - Employer/TPA Request to Broker (Re-Pull by EmployerTPASOAPTransactionNumber)

Header Element Required Definition Example

To Y Broker Broker

From Y The Unique ID of the employer or

TPA from which this message

originated

BR000000001

PullCollection Y Signifies one of three Pull

transactions desired by the employer

or TPA

2 - Indicates a re-Pull by

2

 45

Header Element Required Definition Example

EmployerTPASOAPTransactionNu

mber

Size is one digit

EmployerTPASOAPTrans

actionNumber

Y The

EmployerTPASOAPTransactionNu

mber that was returned in the

response for the regular Pull on a

previous Pull request. This specifies

the file the employer or TPA wants

to re-Pull

7350

4.3.4.2.1.1 SOAP Example - Employer/TPA Request to Central Broker (Re-Pull by

EmployerTPASOAPTransactionNumber):

<To xmlns="https:// REDACTED /schemas">Broker</To>

<From xmlns="https:// REDACTED /schemas"> BR000000001</From>

<PullCollection xmlns="https:// REDACTED /schemas">2</PullCollection>

<EmployerTPASOAPTransactionNumber xmlns="https:// REDACTED

/schemas">7350</EmployerTPASOAPTransactionNumber>

4.3.4.2.2 Central Broker Response to Request (Re-Pull by

EmployerTPASOAPTransactionNumber)

Table 27 - Broker Response to Request (Re-Pull by EmployerTPASOAPTransactionNumber)

Header Element Definition Example

To The Unique ID of the employer or TPA from

which this message originated

BR000000001

From The Unique ID of the employer or TPA from

which these response records originated

UT

EmployerTPASOAPTrans

actionNumber

The EmployerTPASOAPTransactionNumber

that was requested by the employer or /TPA

7350

MessageCode The acknowledgement code applied to the

message that indicates success or failure of the

entire transmission. See 4.2.5 for further

1

 46

Header Element Definition Example

information on Message Codes.

Size is one digit.

4.3.4.2.2.1 SOAP Example - Central Broker Response to Request (Re-Pull by

EmployerTPASOAPTransactionNumber):

<To xmlns="https:// REDACTED /schemas"> BR000000001</To>

<From xmlns="https:// REDACTED /schemas">UT</From>

<EmployerTPASOAPTransactionNumber xmlns="https:// REDACTED

/schemas">7350</EmployerTPASOAPTransactionNumber>

<MessageCode xmlns="https:// REDACTED /schemas">1</MessageCode>

4.3.4.2.3 Employer/TPA Acknowledgment to Central Broker (Re-Pull by

EmployerTPASOAPTransactionNumber)

Table 28 - Employer/TPA Acknowledgment to Broker (Re-Pull by EmployerTPASOAPTransactionNumber)

Header Element Required Definition Example

To Y Broker Broker

From Y The Unique ID of the employer or

TPA from which this message

originated.

BR000000001

EmployerTPASOAPTrans

actionNumber

Y The

EmployerTPASOAPTransactionNu

mber that was returned in the

response for the regular Pull

Size is 32 hexadecimal digits

7350

MessageCode Y The acknowledgement code applied

to the message that indicates success

or failure of the entire transmission.

See 4.2.5 for further information on

Message Codes.

Size is one digit

1

 47

4.3.4.2.3.1 SOAP Example - Employer/TPA Acknowledgment to Central Broker (Re-Pull

by EmployerTPASOAPTransactionNumber):

<To xmlns="https:// REDACTED /schemas">Broker</To>

<From xmlns="https:// REDACTED /schemas"> BR000000001</From>

<EmployerTPASOAPTransactionNumber xmlns="https:// REDACTED

/schemas">7350</EmployerTPASOAPTransactionNumber>

<MessageCode xmlns="https:// REDACTED /schemas">1</MessageCode>

4.3.4.3 Employer/TPA Pull from Central Broker – Re-Pull by Date

The following sections contain the custom header elements for an employer or TPA Re-Pull by

Date from the Broker.

4.3.4.3.1 Employer/TPA Request to Central Broker (Re-Pull by Date)

The first time this operation is called, the EmployerTPASOAPTransactionNumber is null and the

dates from which the connector wants to Re-Pull are included in the SOAP payload.

When the Broker replies with the first file, the Broker will include the next

EmployerTPASOAPTransactionNumber during that date range in a SOAP header attribute

(NextEmployerTPASOAPTransactionNumber).

In the next call to this operation, the caller includes this EmployerTPASOAPTransactionNumber

with the date range. This differentiates to the Broker the next call in the series from a brand new

Re-Pull by Date request.

The last file sent back to the connector is indicated by a null value for the next

EmployerTPASOAPTransactionNumber.

Table 29 - Employer/TPA Request to Broker (Re-Pull by Date)

Header Element Required Definition Example

To Y Broker Broker

From Y The Unique ID of the employer or

TPA from which this message

originated.

BR000000001

PullCollection Y Signifies one of three Pull

transactions desired by the employer

or TPA

3 - Indicates a re-Pull by Date

Size is one digit

3

 48

Header Element Required Definition Example

EmployerTPASOAPTrans

actionNumber

Y This must not be included for the

first call by Date. On subsequent

calls, this must be filled in with the

NextEmployerTPASOAPTransactio

nNumber returned on the previous

call in order to collect all records on

the date specified

4.3.4.3.1.1 SOAP Example - Employer/TPA Request to Central Broker (Re-Pull by Date):

<To xmlns="https:// REDACTED /schemas">Broker</To>

<From xmlns="https:// REDACTED /schemas"> BR000000001</From>

<PullCollection xmlns="https:// REDACTED /schemas">3</PullCollection>

4.3.4.3.2 Central Broker Response to Request (Re-Pull by Date)

Table 30 - Broker Response to Request (Re-Pull by Date)

Header Element Definition Example

To Broker Broker

From The Unique ID of the employer or TPA

from which this message originated.

BR000000001

EmployerTPASOAPTransact

ionNumber

The first

EmployerTPASOAPTransactionNumber that

was returned in the response for the regular

Pull on that date

7350

MessageCode The acknowledgement code applied to the

message that indicates success or failure of

the entire transmission. See 4.2.5 for further

information on Message Codes.

Size is one digit

1

NextEmployerTPASOAPTra

nsactionNumber

The next

EmployerTPASOAPTransactionNumber that

was returned in the response for the regular

Pull on that date. This header will not be

included in the response when the last file in

the data range is being returned, indicating

7351

 49

Header Element Definition Example

there are no more files to be sent.

4.3.4.3.2.1 SOAP Example - Central Broker Response to Request (Re-Pull by Date):

<To xmlns="https:// REDACTED /schemas"> BR000000001</To>

<From xmlns="https:// REDACTED /schemas">UT</From>

<EmployerTPASOAPTransactionNumber xmlns="https:// REDACTED

/schemas">7350</EmployerTPASOAPTransactionNumber>

<MessageCode xmlns="https:// REDACTED /schemas">1</MessageCode>

<NextEmployerTPASOAPTransactionNumber xmlns="https:// REDACTED

/schemas">7351</NextEmployerTPASOAPTransactionNumber>

4.3.4.3.3 Employer/TPA Acknowledgment to Central Broker (Re-Pull by Date)

Table 31 - Employer/TPA Acknowledgment to Broker (Re-Pull by Date)

Header Element Required Definition Example

To Y Broker Broker

From Y The Unique ID of the employer or

TPA from which this message

originated.

BR000000001

EmployerTPASOAPTrans

actionNumber

Y The

EmployerTPASOAPTransactionNu

mber that was returned in the

response for the regular Pull

7350

MessageCode Y The acknowledgement code applied

to the message that indicates success

or failure of the entire transmission.

See 4.2.5 for further information on

Message Codes.

Size is one digit

1

4.3.4.3.3.1 SOAP Example - Employer/TPA Acknowledgment to Central Broker (Re-Pull

by Date)

<To xmlns="https:// REDACTED /schemas">Broker</To>

<From xmlns="https:// REDACTED /schemas"> BR000000001</From>

 50

<EmployerTPASOAPTransactionNumber xmlns="https:// REDACTED

/schemas">7350</EmployerTPASOAPTransactionNumber>

<MessageCode xmlns="https:// REDACTED /schemas">1</MessageCode>

4.4 SOAP Payload

4.4.1 Separation Information

4.4.1.1 Post Payload

A “Post” is defined (see Section 4.1.1) as sending a request or response to the Broker by a

particular connector. This section discusses the (pre-encryption) payloads in the SOAP message.

4.4.1.1.1 State Post Payload

4.4.1.1.1.1 Post to Central Broker Payload

The “Post” payload in the SOAP message is the data defined in the

StateSeparationRequestCollection defined in the Separation Request xsd.

<?xml version="1.0"?>

<StateSeparationRequestCollection xmlns="https:// REDACTED /schemas"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="https:// REDACTED /schemas REDACTED ">

 <StateSeparationRequest>

 <StateRequestRecordGUID>07000000000000000000000000099100</StateRequestR

ecordGUID>

 <SSN>000000546</SSN>

 <ClaimEffectiveDate>2008-11-16</ClaimEffectiveDate>

 <ClaimNumber>0</ClaimNumber>

 <StateEmployerAccountNbr>480616009</StateEmployerAccountNbr>

 <EmployerName>TEAM AUTOMOTIVE LLC</EmployerName>

 <FEIN>841461123</FEIN>

 <TypeofEmployerCode>1</TypeofEmployerCode>

 <TypeofClaimCode>1</TypeofClaimCode>

 <BenefitYearBeginDate>2008-11-16</BenefitYearBeginDate>

 <RequestingStateAbbreviation>CO</RequestingStateAbbreviation>

 <ClaimantLastName>Fortyseven</ClaimantLastName>

 <ClaimantFirstName>Mark</ClaimantFirstName>

 <ClaimantMiddleInitial>A</ClaimantMiddleInitial>

 <ClaimantJobTitle>Test Job Title 47</ClaimantJobTitle>

 <ClaimantReportedFirstDayofWork>2004-05-

17</ClaimantReportedFirstDayofWork>

 <ClaimantReportedLastDayofWork>2008-11-

14</ClaimantReportedLastDayofWork>

 <WagesWeeksNeededCode>NA</WagesWeeksNeededCode>

 <ClaimantSepReasonCode>1</ClaimantSepReasonCode>

 <RequestDate>2008-11-16</RequestDate>

 <ResponseDueDate>2008-12-01</ResponseDueDate>

 </StateSeparationRequest>

 <StateSeparationRequest>

 <StateRequestRecordGUID>07000000000000000000000000099993</StateRequestR

ecordGUID>

 51

 <SSN>000000510</SSN>

 <ClaimEffectiveDate>2008-11-16</ClaimEffectiveDate>

 <ClaimNumber>0</ClaimNumber>

 <StateEmployerAccountNbr>480616009</StateEmployerAccountNbr>

 <EmployerName>TEAM AUTOMOTIVE LLC</EmployerName>

 <FEIN>841461123</FEIN>

 <TypeofClaimCode>1</TypeofClaimCode>

 <BenefitYearBeginDate>2008-11-16</BenefitYearBeginDate>

 <RequestingStateAbbreviation>CO</RequestingStateAbbreviation>

 <ClaimantLastName>Eleven</ClaimantLastName>

 <ClaimantFirstName>Nate</ClaimantFirstName>

 <ClaimantMiddleInitial>Z</ClaimantMiddleInitial>

 <ClaimantSuffix>III</ClaimantSuffix>

 <ClaimantJobTitle>MaximumCharacTest Job Title

26</ClaimantJobTitle>

 <ClaimantReportedFirstDayofWork>2005-05-

15</ClaimantReportedFirstDayofWork>

 <ClaimantReportedLastDayofWork>2008-11-

14</ClaimantReportedLastDayofWork>

 <WagesWeeksNeededCode>NA</WagesWeeksNeededCode>

 <ClaimantSepReasonCode>99</ClaimantSepReasonCode>

 <RequestDate>2008-11-16</RequestDate>

 <ResponseDueDate>2008-12-01</ResponseDueDate>

 </StateSeparationRequest>

</StateSeparationRequestCollection>

4.4.1.1.1.2 Central Broker Acknowledgement to State Payload

In the acknowledgement to the state Post, the Broker sends back a response that contains the

number of requests it received, the number in error, and the dates that it started receiving the

records and finished receiving the records. This verifies to the state that the Broker received the

desired file so it can move on to the next file.

<StateSeparationRequestCollectionAcknowledgement xmlns="https:// REDACTED

/schemas">

 <StateRequestFileGUID>D0F7202142A448F0747E99F75CE0FC00</StateRequestFileG

UID>

 <NumberOfRequestRecordsReceived>63</NumberOfRequestRecordsReceived>

 <NumberOfRequestRecordsInError>0</NumberOfRequestRecordsInError>

 <DateStartedReceivingTransmission>2009-07-13T02:37:53.000-

04:00</DateStartedReceivingTransmission>

 <DateFinishedReceivingTransmission>2009-07-13T02:37:54.000-

04:00</DateFinishedReceivingTransmission>

</StateSeparationRequestCollectionAcknowledgement>

Note: The Broker also sends back custom SOAP header information that

tells the overall status of the message. This is defined in Section 4.3-

SOAP Custom Headers.

If the Broker determines there were Business Rule or XSD errors in the “Post” message, the

Broker will also return to the state all of the information that it can on why each individual

request failed. The FailedSeparationRequest element defined in the separation request XSD will

 52

present the Error Code and the Error Message of the error it found, as described in Part B,

Section C-2.8.

 <FailedSeparationRequest>

 <StateRequestRecordGUID>00000000000000000000000000099108</StateReques

tRecordGUID>

 <ErrorOccurrence>

 <ErrorCode>101</ErrorCode>

 <ErrorMessage>XSD validation violation</ErrorMessage>

 </ErrorOccurrence>

 </FailedSeparationRequest>

Putting this together with the successful acknowledgement:

<StateSeparationRequestCollectionAcknowledgement xmlns="https:// REDACTED

/schemas">

 <StateRequestFileGUID>D0F7202142A448F0747E99F75CE0FC00</StateRequestFileG

UID>

 <FailedSeparationRequest>

 <StateRequestRecordGUID>00000000000000000000000000099108</StateReques

tRecordGUID>

 <ErrorOccurrence>

 <ErrorCode>101</ErrorCode>

 <ErrorMessage>XSD validation violation</ErrorMessage>

 </ErrorOccurrence>

 </FailedSeparationRequest>

 <FailedSeparationRequest>

 <StateRequestRecordGUID>00000000000000000000000000099935</StateReques

tRecordGUID>

 <ErrorOccurrence>

 <ErrorCode>101</ErrorCode>

 <ErrorMessage>XSD validation violation</ErrorMessage>

 </ErrorOccurrence>

 </FailedSeparationRequest>

 <FailedSeparationRequest>

 <StateRequestRecordGUID>00000000000000000000000000099999</StateReques

tRecordGUID>

 <ErrorOccurrence>

 <ErrorCode>101</ErrorCode>

 <ErrorMessage>XSD validation violation</ErrorMessage>

 </ErrorOccurrence>

 </FailedSeparationRequest>

 <FailedSeparationRequest>

 <StateRequestRecordGUID>00000000000000000000000000099998</StateReques

tRecordGUID>

 <ErrorOccurrence>

 <ErrorCode>101</ErrorCode>

 <ErrorMessage>XSD validation violation</ErrorMessage>

 </ErrorOccurrence>

 </FailedSeparationRequest>

 <NumberOfRequestRecordsReceived>63</NumberOfRequestRecordsReceived>

 <NumberOfRequestRecordsInError>4</NumberOfRequestRecordsInError>

 <DateStartedReceivingTransmission>2009-07-13T02:37:53.000-

04:00</DateStartedReceivingTransmission>

 <DateFinishedReceivingTransmission>2009-07-13T02:37:54.000-

 53

04:00</DateFinishedReceivingTransmission>

</StateSeparationRequestCollectionAcknowledgement>

4.4.1.1.2 Employer/TPA Post Payload

4.4.1.1.2.1 Post to Central Broker Payload

The “Post” payload in the SOAP message is the data defined in the

EmployerTPASeparationResponseCollection defined in the Separation Response xsd

<?xml version="1.0"?>

<EmployerTPASeparationResponseCollection xsi:schemaLocation="https://

REDACTED /schemas REDACTED " xmlns="https:// REDACTED /schemas"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <EmployerTPASeparationResponse>

 <StateRequestRecordGUID>00000000000000000000000000008808</StateRequestR

ecordGUID>

 <BrokerRecordTransactionNumber>2001000</BrokerRecordTransactionNumber>

 <SSN>111111119</SSN>

 <ClaimEffectiveDate>2009-01-04</ClaimEffectiveDate>

 <ClaimNumber>6369857</ClaimNumber>

 <StateEmployerAccountNbr>16475004</StateEmployerAccountNbr>

 <ClaimantNameWorkedAsForEmployer>Gloria Ann

LKJFGRE2</ClaimantNameWorkedAsForEmployer>

 <ClaimantJobTitle>Customer Inquiry Rep</ClaimantJobTitle>

 <SeasonalEmploymentInd>N</SeasonalEmploymentInd>

 <EmployerReportedClaimantFirstDayofWork>2007-11-

05</EmployerReportedClaimantFirstDayofWork>

 <EmployerReportedClaimantLastDayofWork>2008-10-

23</EmployerReportedClaimantLastDayofWork>

 <EffectiveSeparationDate>2008-10-23</EffectiveSeparationDate>

 <TotalEarnedWagesNeededInd>1</TotalEarnedWagesNeededInd>

 <TotalWeeksWorkedNeededInd>1</TotalWeeksWorkedNeededInd>

 <TotalEarnedWages>0</TotalEarnedWages>

 <TotalWeeksWorked>0</TotalWeeksWorked>

 <WagesEarnedAfterClaimEffectiveDate>0</WagesEarnedAfterClaimEffectiveDa

te>

 <NumberOfHoursWorkedAfterClaimEffectiveDate>0</NumberOfHoursWorkedAfter

ClaimEffectiveDate>

 <AverageWeeklyWage>0</AverageWeeklyWage>

 <ClaimantActionsToAvoidQuitInd>N</ClaimantActionsToAvoidQuitInd>

 <EmployerSepReasonCode>6</EmployerSepReasonCode>

 <VoluntarySepReasonCode>1</VoluntarySepReasonCode>

 <ContinuingWorkAvailableInd>Y</ContinuingWorkAvailableInd>

 <VoluntarySepReasonComments>The claimant voluntarily quit without

good cause stating, ‘i loved the time i worked here i had some family

emergencies that were out of my hands so i had some attendance issues but i

will say this is a good company to work for.’ A copy of the claimant’s

online electronically signed Reason for Resignation (Exhibit A) is attached

for your review. The claimant quit without giving a reason. Due to the manner

in which the claimant resigned, we were unable to determine any details

concerning the resignation. We maintain the claimant left for personal

 54

reasons. We request relief from charges on this

claim.</VoluntarySepReasonComments>

 <PreparerTypeCode>E</PreparerTypeCode>

 <PreparerTelephoneNumberPlusExt>9724312108</PreparerTelephoneNumberPlus

Ext>

 <PreparerContactName>Jay Six</PreparerContactName>

 <PreparerTitle>Project Manager</PreparerTitle>

 <PreparerFaxNbr>9725312108</PreparerFaxNbr>

 <PreparerEmailAddress>j6@jcpenney.com</PreparerEmailAddress>

 <AttachmentID>0</AttachmentID>

 </EmployerTPASeparationResponse>

</EmployerTPASeparationResponseCollection>

4.4.1.1.2.2 Central Broker Acknowledgement to Employer/TPA Payload

In the acknowledgement to the state Post, the Broker sends back a response that contains the

number of responses it received, the number in error, and the dates that it started receiving the

records and finished receiving the records. This verifies to the employer or TPA that the Broker

received the desired file so it can move on to the next file.

< EmployerTPASeparationResponseCollectionAcknowledgement xmlns="https://

REDACTED /schemas">

 <EmployerTPAResponseFileGUID>542A4AE2395FEDDF1EAA3E57F2DFBCE0</EmployerTP

AResponseFileGUID>

 <NumberOfResponseRecordsReceived>22</NumberOfResponseRecordsReceived>

 <NumberOfResponseRecordsInError>0</NumberOfResponseRecordsInError>

 <DateStartedReceivingTransmission>2009-07-22T03:13:50.000-

04:00</DateStartedReceivingTransmission>

 <DateFinishedReceivingTransmission>2009-07-22T03:13:50.000-

04:00</DateFinishedReceivingTransmission>

</EmployerTPASeparationResponseCollectionAcknowledgement>

Note: The Broker also sends back custom SOAP header information that

tells the overall status of the message. This is defined in Section 4.3- SOAP

Custom Headers.

If the Broker determines there were Business Rule or XSD errors in the “Post” message, the

Broker will also return to the employer or TPA all of the information that it can on why each

individual response failed. The FailedSeparationResponse element defined in the separation

response XSD will present the Error Code and the Error Message of the error it found, as

described in Part B, Section C-2.8.

 <FailedSeparationResponse>

<StateRequestRecordGUID>00000000000000000000000000099943</StateRequestRecordG

UID>

 <BrokerRecordTransactionNumber>2001552</BrokerRecordTransactionNumber

>

 <ErrorOccurrence>

 <ErrorCode>213</ErrorCode>

 <ErrorMessage>Business Rule violation - There must be a value

(Character - Size 1) for TotalWeeksWorkedNeededInd if WagesWeeksNeededCode =

 55

WW</ErrorMessage>

 </ErrorOccurrence>

 </FailedSeparationResponse>

Putting this together with the successful acknowledgement:

<EmployerTPASeparationResponseCollectionAcknowledgement xmlns="https://

REDACTED /schemas">

 <EmployerTPAResponseFileGUID>542A4AE2395FEDDF1EAA3E57F2DFBCE0</EmployerTP

AResponseFileGUID>

 <FailedSeparationResponse>

 <StateRequestRecordGUID>00000000000000000000000000099943</StateReques

tRecordGUID>

 <BrokerRecordTransactionNumber>2001552</BrokerRecordTransactionNumber

>

 <ErrorOccurrence>

 <ErrorCode>213</ErrorCode>

 <ErrorMessage>Business Rule violation - There must be a value

(Character - Size 1) for TotalWeeksWorkedNeededInd if WagesWeeksNeededCode =

WW</ErrorMessage>

 </ErrorOccurrence>

 </FailedSeparationResponse>

 <NumberOfResponseRecordsReceived>22</NumberOfResponseRecordsReceived>

 <NumberOfResponseRecordsInError>1</NumberOfResponseRecordsInError>

 <DateStartedReceivingTransmission>2009-07-22T03:13:50.000-

04:00</DateStartedReceivingTransmission>

 <DateFinishedReceivingTransmission>2009-07-22T03:13:50.000-

04:00</DateFinishedReceivingTransmission>

</EmployerTPASeparationResponseCollectionAcknowledgement>

4.4.1.2 Pull Payload

A “Pull” is defined (see Section 4.1.2) as sending a query to the Central Broker to allow the

Central Broker to send the connector all of the requests or responses it has waiting for it (in

multiple transactions if they are from different endpoints). This section discusses the (pre-

encryption) payloads in the SOAP message.

4.4.1.2.1 State Pull Payload

4.4.1.2.1.1 Pull from Central Broker

The StateSeparationResponseCollectionQuery defined in REDACTED WSDL (see Section 4.6)

is a complex type that allows the caller to specify one of three operations: a Pull, a Re-Pull by

StateSOAPTransactionNumber, and a Re-Pull by a Date Range.

<!-- Query element for states to collect claim responses they are expecting -

->

 <xs:element name=" REDACTED "

 type REDACTED "/>

 <!-- Types for query element for states to collect claim responses they

are expecting -->

 56

 <xs:complexType name="StateSeparationResponseCollectionQueryType">

 <xs:sequence>

 <xs:element name="StatePostalCode" type="StateAbrCodes" />

 <xs:element name="StateSeparationResponseCollectionQueryCriteria"

 type="StateSeparationResponseCollectionQueryCriteriaType"

 minOccurs="0" />

 </xs:sequence>

 <xs:attribute ref="wsu:Id" use="optional"/>

 </xs:complexType>

 <xs:complexType

name="StateSeparationResponseCollectionQueryCriteriaType">

 <xs:sequence>

 <xs:element name="StateSOAPTransactionNumber"

type="xs:nonNegativeInteger" minOccurs="0"/>

 <xs:group

ref="StateSeparationResponseCollectionQueryCriteriaGroup" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 <xs:group name="StateSeparationResponseCollectionQueryCriteriaGroup">

 <xs:sequence>

 <xs:element name="BrokerRecordEffectiveDateFrom"

type="CustomDateTime" />

 <xs:element name="BrokerRecordEffectiveDateTo"

type="CustomDateTime" />

 </xs:sequence>

 </xs:group>

For the straight Pull, the caller needs to supply only the state Unique ID. Although there are

different ways to verify the calling state besides this element, the Broker uses it as an additional

security check. Also, there is a requirement in the WSDL 1.1 specification that a WSDL

definition have at least one input attribute.

<?xml version="1.0" encoding="US-ASCII"?>

<StateSeparationResponseCollectionQuery xmlns="https:// REDACTED /schemas"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="https:// REDACTED /schemas SeparationResponse.xsd ">

 <StatePostalCode>ST</StatePostalCode>

</StateSeparationResponseCollectionQuery>

For the Re-Pull by StateSOAPTransactionNumber, the caller needs to supply the state Unique ID

and the StateSOAPTransactionNumber element out of the

StateSeparationResponseCollectionQueryCriteriaType. This will allow the Broker to send the

file defined by the StateSOAPTransactionNumber.

<?xml version="1.0" encoding="US-ASCII"?>

<StateSeparationResponseCollectionQuery xmlns="https:// REDACTED /schemas"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="https:// REDACTED /schemas combined.xsd ">

 <StatePostalCode>ST</StatePostalCode>

 57

 <StateSeparationResponseCollectionQueryCriteria>

 <StateSOAPTransactionNumber>123456221</StateSOAPTransactionNumber>

 </StateSeparationResponseCollectionQueryCriteria>

</StateSeparationResponseCollectionQuery>

For the Re-Pull by date range, the caller needs to supply the state Unique

ID and the StateSeparationResponseCollectionQueryCriteriaGroup element

out of the StateSeparationResponseCollectionQueryCriteriaType The Re-

Pull by date range will pull all the files that were pulled by the connector

during the date range specified.

The StateSeparationResponseCollectionQueryCriteriaGroup is a complex

type that is defined as a begin date (BrokerRecordEffectiveDateFrom), an

end date (BrokerRecordEffectiveDateTo) and a

StateSOAPTransactionNumber.

The first time this operation is called, the StateSOAPTransactionNumber

must not be included and the date range that the files to be Re-Pulled are

included.

When the Broker sends back the first file in this date range, it will include in the SOAP header

the next StateSOAPTransactionNumber that it sent during that date range (in element name

NextStateSOAPTransactionNumber). In the next call to this operation, the caller must include

the NextStateSOAPTransactionNumber as the StateSOAPTransactionNumber along with the

date range. This differentiates to the Broker the next call in the series from a brand new Re-Pull

by Date request.

When the Central Broker determines that it has no more files to send back to the connector in

the given date range, the last file sent back to the connector is indicated by the Central Broker

not including the next StateSOAPTransactionNumber (so there will not be a

NextStateSOAPTransactionNumber included in the http response SOAP header).

First Call:

<?xml version="1.0" encoding="US-ASCII"?>

<!-- test query to re-pull by date range, pulls up to 8mb of records -->

<StateSeparationResponseCollectionQuery xmlns="https:// REDACTED /schemas"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="https:// REDACTED /schemas combined.xsd ">

 <StatePostalCode>ST</StatePostalCode>

 <StateSeparationResponseCollectionQueryCriteria>

 <BrokerRecordEffectiveDateFrom>2009-01-01T12:00:00.000-

04:00</BrokerRecordEffectiveDateFrom>

 <BrokerRecordEffectiveDateTo>2009-12-31T12:00:00.000-

04:00</BrokerRecordEffectiveDateTo>

 </StateSeparationResponseCollectionQueryCriteria>

</StateSeparationResponseCollectionQuery>

WARNING: If the end date

in the Re-Pull by date range

is in the future, this will

cause the Central Broker to

resend all transactions

including all the resent

transactions that the Central

Broker has been delivering

due to this call, thus putting

your Connector into an

infinite loop until that date is

reached. This will tax the

Connector and the Central

Broker needlessly and must

be avoided.

 58

Subsequent Calls:

<?xml version="1.0" encoding="US-ASCII"?>

<!-- test query to re-pull by date range, pulls up to 8mb of records -->

<StateSeparationResponseCollectionQuery xmlns="https:// REDACTED /schemas"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="https:// REDACTED /schemas combined.xsd ">

 <StatePostalCode>ST</StatePostalCode>

 <StateSeparationResponseCollectionQueryCriteria>

<StateSOAPTransactionNumber>12345678901234567890123456789012</StateSOAP

TransactionNumber>

 <BrokerRecordEffectiveDateFrom>2009-01-01T12:00:00.000-

04:00</BrokerRecordEffectiveDateFrom>

 <BrokerRecordEffectiveDateTo>2009-12-31T12:00:00.000-

04:00</BrokerRecordEffectiveDateTo>

 </StateSeparationResponseCollectionQueryCriteria>

</StateSeparationResponseCollectionQuery>

4.4.1.2.1.2 Central Broker Response to the State

When the Broker receives a “Pull” request from a State, it begins assembling all the responses

that are intended for that state. It constructs a SOAP message according to the rules for a

Separation Information SOAP message (less than 8MB, one employer or TPA per message, etc.).

It adds the additional field BrokerRecordEffectiveDate to the response, which indicates the date

that it was accepted into the Broker. It then sends the responses in the HTTP response.

<StateSeparationResponseCollection xmlns="https:// REDACTED /schemas">

 <StateSeparationResponse>

 <StateRequestRecordGUID>00000000000000000000000000099100</StateReques

tRecordGUID>

 <BrokerRecordTransactionNumber>2001636</BrokerRecordTransactionNumber

>

 <SSN>000000546</SSN>

 <ClaimEffectiveDate>2008-11-16</ClaimEffectiveDate>

 <ClaimNumber>0</ClaimNumber>

 <StateEmployerAccountNbr>480616009</StateEmployerAccountNbr>

 <ClaimantJobTitle>Test Job Title 47</ClaimantJobTitle>

 <SeasonalEmploymentInd>N</SeasonalEmploymentInd>

 <EmployerReportedClaimantFirstDayofWork>2004-05-

17</EmployerReportedClaimantFirstDayofWork>

 <EmployerReportedClaimantLastDayofWork>2008-11-

14</EmployerReportedClaimantLastDayofWork>

 <AverageWeeklyWage>1575.33</AverageWeeklyWage>

 <EmployerSepReasonCode>1</EmployerSepReasonCode>

 <ReturnToWorkInd>Y</ReturnToWorkInd>

 <ReturnToWorkDate>2009-02-01</ReturnToWorkDate>

 <Remuneration>

 <RemunerationTypeCode>1</RemunerationTypeCode>

 <RemunerationAmountPerPeriod>393.83</RemunerationAmountPerPeriod>

 <RemunerationPeriodFrequencyCode>W</RemunerationPeriodFrequencyCo

 59

de>

 <DateRemunerationIssued>2008-11-14</DateRemunerationIssued>

 <EmployerAllocationInd>Y</EmployerAllocationInd>

 <AllocationBeginDate>2008-11-14</AllocationBeginDate>

 <AllocationEndDate>2008-12-14</AllocationEndDate>

 </Remuneration>

 <AverageNumberofHoursWorkedperWeek>40</AverageNumberofHoursWorkedperW

eek>

 <EmployerSepReasonComments>Test Sep Reason Comments

Code1</EmployerSepReasonComments>

 <AttachmentOccurrence>

 <UniqueAttachmentId>1</UniqueAttachmentId>

 <DescriptionofAttachmentCode>1</DescriptionofAttachmentCode>

 <TypeofDocument>test type of document</TypeofDocument>

 <AttachmentSize>2</AttachmentSize>

 <AttachmentData>UjBsR09EbGhjZ0dTQUxNQUFBUUNBRU1tQ1p0dU1GUXhEUzhi<

/AttachmentData>

 </AttachmentOccurrence>

 <PreparerTypeCode>T</PreparerTypeCode>

 <PreparerCompanyName>ADP</PreparerCompanyName>

 <PreparerTelephoneNumberPlusExt>4445557777</PreparerTelephoneNumberPl

usExt>

 <PreparerContactName>Preparer ADP Name Maximum Character Testing

Sixty Characte</PreparerContactName>

 <PreparerTitle>Preparer ADP Title Max Charact</PreparerTitle>

 <PreparerFaxNbr>4445557788</PreparerFaxNbr>

 <PreparerEmailAddress>adppreparer@test.com</PreparerEmailAddress>

 <BrokerRecordEffectiveDate>2009-07-22T01:39:20.000-

04:00</BrokerRecordEffectiveDate>

 </StateSeparationResponse>

</StateSeparationResponseCollection>

4.4.1.2.1.3 State Acknowledgement to the Central Broker

The StateSeparationResponseCollectionAcknowledgement is initiated once the state has received

its file from the Broker. The acknowledgement must accompany every state Pull request, as this

is the manner in which the Broker knows that the state Pull was successful. This is required even

if the Broker has sent back an empty file and a MessageCode of 2. If this is not sent back to the

Broker, the next “Pull” call to the Broker will result in the same file being passed back. The

Broker will not move on to the next file until it receives a successful acknowledgement. If the

Broker receives 3 unanswered Pull requests, it will suspend any processing of Pull requests by

the State until the Broker Administrator and State Administrator can work out the problem.

The key field in this message is the StateSOAPTransmissionNumber, which must correspond

with the StateSOAPTransmissionNumber sent back in the Broker Response. The remainder of

the message is just reporting information; the values are not used for anything at this time. If the

state does not collect this information, just return 0 for the number of records and place a valid

date in the date fields.

<?xml version="1.0" encoding="UTF-8"?>

 60

<StateSeparationResponseCollectionAcknowledgement xmlns="https:// REDACTED

/schemas" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="https:// REDACTED /schemas combined.xsd ">

<StateSOAPTransmissionNumber>12345678901234567890123456789012</StateSOAPTrans

missionNumber>

 <NumberOfResponseRecordsReceived>0</NumberOfResponseRecordsReceived>

 <NumberOfResponseRecordsInError>0</NumberOfResponseRecordsInError>

 <DateStartedReceivingTransmission>2008-12-31T12:00:00.000-

04:00</DateStartedReceivingTransmission>

 <DateFinishedReceivingTransmission>2008-12-31T12:00:00.000-

04:00</DateFinishedReceivingTransmission>
</StateSeparationResponseCollectionAcknowledgement>

4.4.1.2.2 Employer/TPA Pull

4.4.1.2.2.1 Pull from Central Broker

The EmployerTPASeparationRequestCollectionQuery is a complex query type that allows the

caller to specify one of three operations: a Pull, a Re-Pull by

EmployerTPASOAPTransactionNumber, and a Re-Pull by a Date Range.

 <!-- Query element for employer to collect claim responses they are

expecting -->

 <xs:element name=" REDACTED "

 type=" REDACTED "/>

 <!-- Types for query element for Employers/TPAs to collect claim requests

they are expecting -->

 <xs:complexType name="EmployerTPASeparationRequestCollectionQueryType">

 <xs:sequence>

 <xs:element name="UniqueID" type="UniqueIDType" />

 <xs:element

name="EmployerTPASeparationRequestCollectionQueryCriteria"

type="EmployerTPASeparationRequestCollectionQueryCriteriaType"

 minOccurs="0" />

 </xs:sequence>

 <xs:attribute ref="wsu:Id" use="optional"/>

 </xs:complexType>

 <xs:complexType

name="EmployerTPASeparationRequestCollectionQueryCriteriaType">

 <xs:sequence>

 <xs:element name="EmployerTPASOAPTransactionNumber"

type="xs:nonNegativeInteger" minOccurs="0" />

 <xs:group

ref="EmployerTPASeparationRequestCollectionQueryCriteriaGroup"

minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 61

 <xs:group

name="EmployerTPASeparationRequestCollectionQueryCriteriaGroup">

 <xs:sequence>

 <xs:element name="BrokerRecordEffectiveDateFrom"

type="CustomDateTime" />

 <xs:element name="BrokerRecordEffectiveDateTo"

type="CustomDateTime" />

 </xs:sequence>

 </xs:group>

For the straight Pull, the caller needs to supply only the employer or TPA Unique ID. Although

there are different ways to verify the calling employer or TPA besides this element, the Broker

uses it as an additional security check. Also, there is a requirement in WSDL 1.1 that a WSDL

definition have at least one input attribute.

<?xml version="1.0" encoding="UTF-8"?>

<EmployerTPASeparationRequestCollectionQuery xmlns="https:// REDACTED

/schemas" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="https:// REDACTED /schemas combined.xsd ">

 <UniqueID>BR000000001</UniqueID>

</EmployerTPASeparationRequestCollectionQuery>

For the Re-Pull by EmployerTPASOAPTransactionNumber, the caller needs to supply the

Employer/TPA Unique ID and the EmployerTPASOAPTransactionNumber element out of the

EmployerTPASeparationResponseCollectionQueryCriteriaType. This will allow the Broker to

send the file defined by the EmployerTPASOAPTransactionNumber.

<?xml version="1.0" encoding="UTF-8"?>

<EmployerTPASeparationRequestCollectionQuery xmlns="https:// REDACTED

/schemas" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="https:// REDACTED /schemas combined.xsd ">

 <UniqueID>BR000000001</UniqueID>

 <EmployerTPASeparationRequestCollectionQueryCriteria>

<EmployerTPASOAPTransactionNumber>26151</EmployerTPASOAPTransactionNumb

er>

 </EmployerTPASeparationRequestCollectionQueryCriteria>

</EmployerTPASeparationRequestCollectionQuery>

For the Re-Pull by date range, the caller needs to supply the EmployerTPA Unique ID and the

EmployerTPASeparationResponseCollectionQueryCriteriaGroup element

out of the EmployerTPASeparationResponseCollectionQueryCriteriaType.

The Re-Pull by date range will pull all the files that were pulled by the

connector during the date range specified.

The EmployerTPASeparationResponseCollectionQueryCriteriaGroup is a

complex query type that is defined as a begin date

(BrokerRecordEffectiveDateFrom), an end date

WARNING: If the end date

in the Re-Pull by date range

is in the future, this will

cause the Central Broker to

resend all transactions

including all the resent

transactions that the Central

Broker has been delivering

due to this call, thus putting

your Connector into an

infinite loop until that date is

reached. This will tax the

Connector and the Central

Broker needlessly and must

be avoided.

 62

(BrokerRecordEffectiveDateTo) and an EmployerTPASOAPTransactionNumber.

The first time this operation is called, the EmployerTPASOAPTransactionNumber must not be

included and the date range that the files to be Re-Pulled are included.

When the Broker sends back the first file in this date range, it will include in the SOAP header

the next EmployerTPASOAPTransactionNumber that it sent during that date range (in element

name NextEmployerTPASOAPTransactionNumber). In the next call to this operation, the caller

must include the NextEmployerTPASOAPTransactionNumber as the

EmployerTPASOAPTransactionNumber along with the date range. This differentiates to the

Broker the next call in the series from a brand new Re-Pull by Date request.

When the Central Broker determines that it has no more files to send back to the connector in

the given date range, the last file sent back to the connector is indicated by the Central Broker

not including the next EmployerTPASOAPTransactionNumber (so there will not be a

NextEmployerTPASOAPTransactionNumber included in the http response SOAP header).

First Call:

<?xml version="1.0" encoding="UTF-8"?>

<EmployerTPASeparationRequestCollectionQuery xmlns="https:// REDACTED

/schemas" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="https:// REDACTED /schemas combined.xsd ">

 <UniqueID>BR000000001</UniqueID>

 <EmployerTPASeparationRequestCollectionQueryCriteria>

 <BrokerRecordEffectiveDateFrom>2009-01-01T12:00:00.000-

04:00</BrokerRecordEffectiveDateFrom>

 <BrokerRecordEffectiveDateTo>2009-12-31T12:00:00.000-

04:00</BrokerRecordEffectiveDateTo>
 </EmployerTPASeparationRequestCollectionQueryCriteria>

</EmployerTPASeparationRequestCollectionQuery>

Subsequent Calls:

<?xml version="1.0" encoding="UTF-8"?>

<EmployerTPASeparationRequestCollectionQuery xmlns="https:// REDACTED

/schemas" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="https:// REDACTED /schemas combined.xsd ">

 <UniqueID>BR000000001</UniqueID>

 <EmployerTPASeparationRequestCollectionQueryCriteria>

<EmployerTPASOAPTransactionNumber>12345678901234567890123456789012</Emp

loyerTPASOAPTransactionNumber>

 <BrokerRecordEffectiveDateFrom>2009-01-01T12:00:00.000-

04:00</BrokerRecordEffectiveDateFrom>

 <BrokerRecordEffectiveDateTo>2009-12-31T12:00:00.000-

04:00</BrokerRecordEffectiveDateTo>

 </EmployerTPASeparationRequestCollectionQueryCriteria>

</EmployerTPASeparationRequestCollectionQuery>

 63

4.4.1.2.2.2 Central Broker Response to Employer/TPA

When the Broker receives a “Pull” request from an Employer/TPA, it begins assembling all the

requests that are intended for that employer or TPA. It constructs a SOAP message according to

the rules for a Separation Information SOAP message (less than 8MB, one employer or TPA per

message, etc.). It adds two additional fields to the Separation Request - the

BrokerRecordEffectiveDate and the BrokerRecordTransactionNumber. The

BrokerRecordEffectiveDate indicates the date that it was accepted into the Broker. The

BrokerRecordTransactionNumber is a unique record tracking number and must be returned on

the response for this record. It then sends the separation requests in the HTTP response.

<EmployerTPASeparationRequestCollection xmlns="https:// REDACTED /schemas">

 <EmployerTPASeparationRequest>

 <StateRequestRecordGUID>00000000000000000000000000099960</StateReques

tRecordGUID>

 <SSN>000000618</SSN>

 <ClaimEffectiveDate>2008-11-23</ClaimEffectiveDate>

 <ClaimNumber>1</ClaimNumber>

 <StateEmployerAccountNbr>555444333</StateEmployerAccountNbr>

 <EmployerName>JC Penney</EmployerName>

 <FEIN>123456789</FEIN>

 <TypeofEmployerCode>4</TypeofEmployerCode>

 <TypeofClaimCode>1</TypeofClaimCode>

 <BenefitYearBeginDate>2008-11-23</BenefitYearBeginDate>

 <RequestingStateAbbreviation>CO</RequestingStateAbbreviation>

 <ClaimantLastName>Sixhundredeighteen</ClaimantLastName>

 <ClaimantFirstName>William</ClaimantFirstName>

 <ClaimantMiddleInitial>R</ClaimantMiddleInitial>

 <ClaimantJobTitle>Test Job Title 618</ClaimantJobTitle>

 <ClaimantReportedFirstDayofWork>2006-11-

17</ClaimantReportedFirstDayofWork>

 <ClaimantReportedLastDayofWork>2008-11-

21</ClaimantReportedLastDayofWork>

 <WagesWeeksNeededCode>NA</WagesWeeksNeededCode>

 <ClaimantSepReasonCode>18</ClaimantSepReasonCode>

 <RequestDate>2008-11-23</RequestDate>

 <ResponseDueDate>2008-12-08</ResponseDueDate>

 <BrokerRecordTransactionNumber>2001569</BrokerRecordTransactionNumber

>

 <BrokerRecordEffectiveDate>2009-07-13T14:35:58.000-

04:00</BrokerRecordEffectiveDate>

 </EmployerTPASeparationRequest>

</EmployerTPASeparationRequestCollection>

4.4.1.2.2.3 Employer/TPA Acknowledgement to Central Broker

The EmployerTPASeparationRequestCollectionAcknowledgement is initiated once the employer

or TPA has received its file from the Broker. The acknowledgement must accompany every

employer or TPA Pull request, as this is the manner in which the Broker knows that the

Employer/TPA Pull was successful. This is required even if the Broker has sent back an empty

file and a MessageCode of 2. If this is not sent back to the Broker, the next “Pull” call to the

Broker will result in the same file being passed back. The Broker will not move on to the next

 64

file until it receives a successful acknowledgement. If the Broker receives 3 unanswered Pull

requests, it will suspend any processing of Pull requests by the Employer/TPA until the Broker

Administrator and Employer/TPA Administrator can work out the problem.

The key field in this message is the EmployerTPASOAPTransmissionNumber, which must

correspond with the EmployerTPASOAPTransmissionNumber sent back in the Broker

Response. The remainder of the message is just reporting information; the values are not used

for anything at this time. If the EmployerTPA does not collect this information, just return 0 for

the number of records and place a valid date in the date fields.

<?xml version="1.0" encoding="UTF-8"?>

<EmployerTPASeparationRequestCollectionAcknowledgement xmlns="https://

REDACTED /schemas" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="https:// REDACTED /schemas combined.xsd ">

 <EmployerTPASOAPTransmissionNumber>3211</EmployerTPASOAPTransmissionNumber>

 <NumberOfRequestRecordsReceived>4</NumberOfRequestRecordsReceived>

 <NumberOfRequestRecordsInError>0</NumberOfRequestRecordsInError>

 <DateStartedReceivingTransmission>2001-12-31T12:00:00.000-

04:00</DateStartedReceivingTransmission>

 <DateFinishedReceivingTransmission>2001-12-31T12:00:00.000-

04:00</DateFinishedReceivingTransmission>

</EmployerTPASeparationRequestCollectionAcknowledgement>

4.4.2 Earnings Verification

4.4.2.1 Post Payload

A “Post” is defined (see Section 4.1.1) as sending a request or response to the Broker by a

particular connector. This section discusses the (pre-encryption) payloads in the SOAP message

for the Earnings Verification Exchange.

4.4.2.1.1 State Post Payload

4.4.2.1.1.1 Post to Central Broker Payload

The “Post” payload in the SOAP message is the data defined in the

StateEarningsVerificationRequestCollection defined in the Earnings Verification Request xsd.

<?xml version="1.0"?>

<StateEarningsVerificationRequestCollection xsi:schemaLocation="https://

REDACTED /schemas EarningsVerificationRequest.xsd" xmlns="https://

REDACTED /schemas" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <StateEarningsVerificationRequest>

 <StateEarningsVerificationRequestRecordGUID>AAA530000000000000000000000

00003</StateEarningsVerificationRequestRecordGUID>

 <RequestingStateAbbreviation>ST</RequestingStateAbbreviation>

 <UIOfficeName>Office Name</UIOfficeName>

 <UIOfficePhone>5555555555</UIOfficePhone>

 <UIOfficeFax>5555555554</UIOfficeFax>

 65

 <UIOfficeEmailAddress>james.madison@state.gov</UIOfficeEmailAddress>

 <StateEmployerAccountNbr>1234567890</StateEmployerAccountNbr>

 <FEIN>123456789</FEIN>

 <EmployerName>ACME</EmployerName>

 <SSN>311111334</SSN>

 <ClaimantLastName>Lastname</ClaimantLastName>

 <ClaimantFirstName>Firstname</ClaimantFirstName>

 <ClaimantMiddleInitial>M</ClaimantMiddleInitial>

 <ClaimantSuffix>JR</ClaimantSuffix>

 <NumberofWeeksRequested>5</NumberofWeeksRequested>

 <EarningsVerificationWeekBeginDate>2010-08-

01</EarningsVerificationWeekBeginDate>

 <EarningsVerificationWeekEndDate>2010-09-

04</EarningsVerificationWeekEndDate>

 <EarningsVerificationComments>This is a comment field for this Earnings

Verification Request</EarningsVerificationComments>

 <RequestDate>2010-10-14</RequestDate>

 <EarningsStatusCode>3</EarningsStatusCode>

 <TipsStatusCode>1</TipsStatusCode>

 <CommissionStatusCode>1</CommissionStatusCode>

 <BonusStatusCode>1</BonusStatusCode>

 <VacationStatusCode>1</VacationStatusCode>

 <SickLeaveStatusCode>1</SickLeaveStatusCode>

 <HolidayStatusCode>3</HolidayStatusCode>

 <SeveranceStatusCode>3</SeveranceStatusCode>

 <WagesInLieuStatusCode>4</WagesInLieuStatusCode>

 <EarningsVerificationResponseCommentIndicator>1</EarningsVerificationRe

sponseCommentIndicator>

 <ResponseDueDate>2010-10-28</ResponseDueDate>

 <EarningsVerificationSourceCode>9</EarningsVerificationSourceCode>

 </StateEarningsVerificationRequest>

</StateEarningsVerificationRequestCollection>

4.4.2.1.1.2 Central Broker Acknowledgement to State Payload

In the acknowledgement to the state Post, the Broker sends back a response that contains the

number of requests it received, the number in error, and the dates that it started receiving the

records and finished receiving the records. This verifies to the state that the Broker received the

desired file so it can move on to the next file.

<StateEarningsVerificationRequestCollectionAcknowledgement xmlns="https://

REDACTED /schemas">

 <StateRequestFileGUID>C0EB9C5D24CA4B8EFB8AEED97A5252C8</StateRequestFileG

UID>

 <NumberOfRequestRecordsReceived>1</NumberOfRequestRecordsReceived>

 <NumberOfRequestRecordsInError>0</NumberOfRequestRecordsInError>

 <DateStartedReceivingTransmission>2010-11-18T10:26:52.730-

05:00</DateStartedReceivingTransmission>

 <DateFinishedReceivingTransmission>2010-11-18T10:26:54.610-

05:00</DateFinishedReceivingTransmission>

</StateEarningsVerificationRequestCollectionAcknowledgement>

 66

Note: The Broker also sends back custom SOAP header information that

tells the overall status of the message. This is defined in Section 4.3-

SOAP Custom Headers.

If the Broker determines there were Business Rule or XSD errors in the “Post” message, the

Broker will also return to the state all of the information that it can on why each individual

request failed. The FailedEarningVerificationRequest element defined in the earnings

verification request XSD will present the Error Code and the Error Message of the error it found,

as described in Part B, Section C-2.8.

 <FailedEarningsVerificationRequest>

 <StateEarningsVerificationRequestRecordGUID>3110100000000000000000000

0000001</StateEarningsVerificationRequestRecordGUID>

 <ErrorOccurrence>

 <ErrorCode>311</ErrorCode>

 <ErrorMessage>Business Rule violation - The

NumberofWeeksRequested (Character - Size 2) must equal the number of days

included in EarningsVerificationWeekBeginDate thru

EarningsVerificationWeekEndDate divided by 7 days.</ErrorMessage>

 </ErrorOccurrence>

 </FailedEarningsVerificationRequest>

Putting this together with the successful acknowledgement:

<StateEarningsVerificationRequestCollectionAcknowledgement xmlns="https://

REDACTED /schemas">

 <StateRequestFileGUID>9CEBA17833DFD7C6476EEDE25D20FFF6</StateRequestFileG

UID>

 <FailedEarningsVerificationRequest>

 <StateEarningsVerificationRequestRecordGUID>3110100000000000000000000

0000001</StateEarningsVerificationRequestRecordGUID>

 <ErrorOccurrence>

 <ErrorCode>311</ErrorCode>

 <ErrorMessage>Business Rule violation - The

NumberofWeeksRequested (Character - Size 2) must equal the number of days

included in EarningsVerificationWeekBeginDate thru

EarningsVerificationWeekEndDate divided by 7 days.</ErrorMessage>

 </ErrorOccurrence>

 </FailedEarningsVerificationRequest>

 <NumberOfRequestRecordsReceived>1</NumberOfRequestRecordsReceived>

 <NumberOfRequestRecordsInError>1</NumberOfRequestRecordsInError>

 <DateStartedReceivingTransmission>2011-01-21T10:49:27.929-

05:00</DateStartedReceivingTransmission>

 <DateFinishedReceivingTransmission>2011-01-21T10:49:28.181-

05:00</DateFinishedReceivingTransmission>

</StateEarningsVerificationRequestCollectionAcknowledgement>

4.4.2.1.2 Employer/TPA Post Payload

4.4.2.1.2.1 Post to Central Broker Payload

 67

The “Post” payload in the SOAP message is the data defined in the

EmployerTPAEarningsVerificationResponseCollection defined in the Earnings Verification

Response xsd.

<?xml version="1.0"?>

<EmployerTPAEarningsVerificationResponseCollection

xsi:schemaLocation="https:// REDACTED /schemas

EarningsVerificationResponse.xsd" xmlns="https:// REDACTED /schemas"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <EmployerTPAEarningsVerificationResponse>

 <!-- Backfilled -->

 <StateEarningsVerificationRequestRecordGUID>AAA530000000000000000000000

00003</StateEarningsVerificationRequestRecordGUID>

 <!-- Backfilled -->

 <BrokerRecordTransactionNumber>5447</BrokerRecordTransactionNumber>

 <!-- Backfilled -->

 <RequestingStateAbbreviation>ST</RequestingStateAbbreviation>

 <!-- Backfilled -->

 <UIOfficeName>Office Name</UIOfficeName>

 <!-- Backfilled -->

 <StateEmployerAccountNbr>1234567890</StateEmployerAccountNbr>

 <!-- Backfilled -->

 <FEIN>123456789</FEIN>

 <CorrectedFEIN>987654321</CorrectedFEIN>

 <!-- Backfilled -->

 <EmployerName>ACME</EmployerName>

 <CorrectedEmployerName>Fly By Night</CorrectedEmployerName>

 <!-- Backfilled -->

 <SSN>311111334</SSN>

 <ClaimantNameWorkedAsForEmployer>John Q

Public</ClaimantNameWorkedAsForEmployer>

 <!-- Backfilled -->

 <NumberofWeeksRequested>5</NumberofWeeksRequested>

 <!-- Backfilled -->

 <EarningsVerificationWeekBeginDate>2010-08-

01</EarningsVerificationWeekBeginDate>

 <!-- Backfilled -->

 <EarningsVerificationWeekEndDate>2010-09-

04</EarningsVerificationWeekEndDate>

 <!-- 1 - Claimaint works, 20 - Never Employed Here, 21 - TPA does not

represent Employer -->

 <ClaimantEmployerWorkRelationshipCode>1</ClaimantEmployerWorkRelationsh

ipCode>

 <!-- 1 Yes, has earnings, 2 - did not have earnings (100% Sales), 9 -

No Work -->

 <EmployerEarningsCode>1</EmployerEarningsCode>

 <FirstDayWorkedinPeriod>2010-08-01</FirstDayWorkedinPeriod>

 <!-- 1 for Yes, 2 for No -->

 <StillWorkingCode>2</StillWorkingCode>

 <LastDayWorked>2010-09-04</LastDayWorked>

 <!-- 1 - Layoff, 2 - Fired, 3 - Vol Quit, 4 - Other -->

 <EmployerSepReasonCode>1</EmployerSepReasonCode>

 <!-- When Request = 1 or (2 with Work/Relationship = 20/21 or Earnings

Code = 9) -->

 68

 <EarningsVerificationResponseComment>This employee was let go during

the time period</EarningsVerificationResponseComment>

 <WeeklyEarningsVerification>

 <WeekBeginDate>2010-08-01</WeekBeginDate>

 <WeekEndDate>2010-08-07</WeekEndDate>

 <HoursWorked>15:00</HoursWorked>

 <!-- See Request values for required or not for all below -->

 <AmountEarnedForWeek>500.00</AmountEarnedForWeek>

 <EarningsPaidDate>2010-08-21</EarningsPaidDate>

 <HolidayAmountPaidForWeek>60.00</HolidayAmountPaidForWeek>

 <HolidayPaidDate>2010-08-07</HolidayPaidDate>

 <SeveranceAmountPaidForWeek>70.00</SeveranceAmountPaidForWeek>

 <SeverancePaidDate>2010-08-07</SeverancePaidDate>

 <WagesInLieuAmountPaidForWeek>80.00</WagesInLieuAmountPaidForWeek>

 <WagesInLieuPaidDate>2010-08-07</WagesInLieuPaidDate>

 </WeeklyEarningsVerification>

 <WeeklyEarningsVerification>

 <WeekBeginDate>2010-08-08</WeekBeginDate>

 <WeekEndDate>2010-08-14</WeekEndDate>

 <HoursWorked>15:00</HoursWorked>

 <!-- See Request values for required or not for all below -->

 <AmountEarnedForWeek>500.00</AmountEarnedForWeek>

 <EarningsPaidDate>2010-08-21</EarningsPaidDate>

 <HolidayAmountPaidForWeek>60.00</HolidayAmountPaidForWeek>

 <HolidayPaidDate>2010-08-14</HolidayPaidDate>

 <SeveranceAmountPaidForWeek>70.00</SeveranceAmountPaidForWeek>

 <SeverancePaidDate>2010-08-14</SeverancePaidDate>

 <WagesInLieuAmountPaidForWeek>80.00</WagesInLieuAmountPaidForWeek>

 <WagesInLieuPaidDate>2010-08-14</WagesInLieuPaidDate>

 </WeeklyEarningsVerification>

 <WeeklyEarningsVerification>

 <WeekBeginDate>2010-08-15</WeekBeginDate>

 <WeekEndDate>2010-08-21</WeekEndDate>

 <HoursWorked>15:00</HoursWorked>

 <!-- See Request values for required or not for all below -->

 <AmountEarnedForWeek>500.00</AmountEarnedForWeek>

 <EarningsPaidDate>2010-08-21</EarningsPaidDate>

 <HolidayAmountPaidForWeek>60.00</HolidayAmountPaidForWeek>

 <HolidayPaidDate>2010-08-21</HolidayPaidDate>

 <SeveranceAmountPaidForWeek>70.00</SeveranceAmountPaidForWeek>

 <SeverancePaidDate>2010-08-21</SeverancePaidDate>

 <WagesInLieuAmountPaidForWeek>80.00</WagesInLieuAmountPaidForWeek>

 <WagesInLieuPaidDate>2010-08-21</WagesInLieuPaidDate>

 </WeeklyEarningsVerification>

 <WeeklyEarningsVerification>

 <WeekBeginDate>2010-08-22</WeekBeginDate>

 <WeekEndDate>2010-08-28</WeekEndDate>

 <HoursWorked>101:00</HoursWorked>

 <!-- See Request values for required or not for all below -->

 <AmountEarnedForWeek>500.00</AmountEarnedForWeek>

 <EarningsPaidDate>2010-08-28</EarningsPaidDate>

 <HolidayAmountPaidForWeek>60.00</HolidayAmountPaidForWeek>

 <HolidayPaidDate>2010-08-28</HolidayPaidDate>

 <SeveranceAmountPaidForWeek>70.00</SeveranceAmountPaidForWeek>

 <SeverancePaidDate>2010-08-28</SeverancePaidDate>

 <WagesInLieuAmountPaidForWeek>80.00</WagesInLieuAmountPaidForWeek>

 69

 <WagesInLieuPaidDate>2010-08-28</WagesInLieuPaidDate>

 </WeeklyEarningsVerification>

 <WeeklyEarningsVerification>

 <WeekBeginDate>2010-08-29</WeekBeginDate>

 <WeekEndDate>2010-09-04</WeekEndDate>

 <HoursWorked>5:00</HoursWorked>

 <!-- See Request values for required or not for all below -->

 <AmountEarnedForWeek>500.00</AmountEarnedForWeek>

 <EarningsPaidDate>2010-09-04</EarningsPaidDate>

 <HolidayAmountPaidForWeek>60.00</HolidayAmountPaidForWeek>

 <HolidayPaidDate>2010-09-04</HolidayPaidDate>

 <SeveranceAmountPaidForWeek>70.00</SeveranceAmountPaidForWeek>

 <SeverancePaidDate>2010-09-04</SeverancePaidDate>

 <WagesInLieuAmountPaidForWeek>80.00</WagesInLieuAmountPaidForWeek>

 <WagesInLieuPaidDate>2010-09-04</WagesInLieuPaidDate>

 </WeeklyEarningsVerification>

 <!-- E - Employer, T - TPA -->

 <PreparerTypeCode>T</PreparerTypeCode>

 <PreparerCompanyName>ABC TPA</PreparerCompanyName>

 <PreparerTelephoneNumberPlusExt>5555555556</PreparerTelephoneNumberPlus

Ext>

 <PreparerContactName>Mrs Sue Herman</PreparerContactName>

 <PreparerTitle>Claims Administrator</PreparerTitle>

 <PreparerFaxNbr>5555555557</PreparerFaxNbr>

 <PreparerEmailAddress>sue.herman@abctpa.com</PreparerEmailAddress>

 <!-- Backfilled -->

 <EarningsVerificationSourceCode>9</EarningsVerificationSourceCode>

 </EmployerTPAEarningsVerificationResponse>

</EmployerTPAEarningsVerificationResponseCollection>

4.4.2.1.2.2 Central Broker Acknowledgement to Employer/TPA Payload

In the acknowledgement to the state Post, the Broker sends back a response that contains the

number of responses it received, the number in error, and the dates that it started receiving the

records and finished receiving the records. This verifies to the employer or TPA that the Broker

received the desired file so it can move on to the next file.

<EmployerTPAEarningsVerificationResponseCollectionAcknowledgement

xmlns="https:// REDACTED /schemas">

 <EmployerTPAResponseFileGUID>399D60FDB970C10C3619DC0B378ABF77</EmployerTP

AResponseFileGUID>

 <NumberOfResponseRecordsReceived>1</NumberOfResponseRecordsReceived>

 <NumberOfResponseRecordsInError>0</NumberOfResponseRecordsInError>

 <DateStartedReceivingTransmission>2011-01-21T11:39:45.842-

05:00</DateStartedReceivingTransmission>

 <DateFinishedReceivingTransmission>2011-01-21T11:39:46.310-

05:00</DateFinishedReceivingTransmission>

</EmployerTPAEarningsVerificationResponseCollectionAcknowledgement>

Note: The Broker also sends back custom SOAP header information that

tells the overall status of the message. This is defined in Section 4.3- SOAP

Custom Headers.

 70

If the Broker determines there were Business Rule or XSD errors in the “Post” message, the

Broker will also return to the employer or TPA all of the information that it can on why each

individual response failed. The FailedEarningsVerificationResponse element defined in the

earnings verification response XSD will present the Error Code and the Error Message of the

error it found, as described in Part B, Section C-2.8.

<FailedEarningsVerificationResponse>

 <StateEarningsVerificationRequestRecordGUID>4520000000000000000000000

0000001</StateEarningsVerificationRequestRecordGUID>

 <BrokerRecordTransactionNumber>6591</BrokerRecordTransactionNumber>

 <ErrorOccurrence>

 <ErrorCode>452</ErrorCode>

 <ErrorMessage>Business Rule violation - There must be a value

(Numeric - 7.2) for SeveranceAmountPaidForWeek in Repeatable Weekly Earnings

Verification 1 if SeveranceStatusCode (from Request) = 2 for Field Required,

Date Not Required or 3 for Field Required, Date Required, Date Paid or 4 for

Field Required, Date Required, Date Allocated</ErrorMessage>

 </ErrorOccurrence>

 </FailedEarningsVerificationResponse>

Putting this together with the successful acknowledgement:

<EmployerTPAEarningsVerificationResponseCollectionAcknowledgement

xmlns="https:// REDACTED /schemas">

 <EmployerTPAResponseFileGUID>CD685018CC4E55949E425F86B83E4687</EmployerTP

AResponseFileGUID>

 <FailedEarningsVerificationResponse>

 <StateEarningsVerificationRequestRecordGUID>4520000000000000000000000

0000001</StateEarningsVerificationRequestRecordGUID>

 <BrokerRecordTransactionNumber>6591</BrokerRecordTransactionNumber>

 <ErrorOccurrence>

 <ErrorCode>452</ErrorCode>

 <ErrorMessage>Business Rule violation - There must be a value

(Numeric - 7.2) for SeveranceAmountPaidForWeek in Repeatable Weekly Earnings

Verification 1 if SeveranceStatusCode (from Request) = 2 for Field Required,

Date Not Required or 3 for Field Required, Date Required, Date Paid or 4 for

Field Required, Date Required, Date Allocated</ErrorMessage>

 </ErrorOccurrence>

 </FailedEarningsVerificationResponse>

 <NumberOfResponseRecordsReceived>1</NumberOfResponseRecordsReceived>

 <NumberOfResponseRecordsInError>1</NumberOfResponseRecordsInError>

 <DateStartedReceivingTransmission>2010-12-14T08:18:59.076-

05:00</DateStartedReceivingTransmission>

 <DateFinishedReceivingTransmission>2010-12-14T08:19:07.776-

05:00</DateFinishedReceivingTransmission>

</EmployerTPAEarningsVerificationResponseCollectionAcknowledgement>

4.4.2.2 Pull Payload

A “Pull” is defined (see Section 4.1.2) as sending a query to the Central Broker to allow the

Central Broker to send the connector all of the requests or responses it has waiting for it (in

multiple transactions if they are from different endpoints). This section discusses the (pre-

encryption) payloads in the SOAP message.

 71

4.4.2.2.1 State Pull Payload

4.4.2.2.1.1 Pull from Central Broker

The StateEarningsVerificationResponseCollectionQuery defined in the State Earnings

Verification Pull WSDL (see Section 4.6) is a complex type that allows the caller to specify one

of three operations: a Pull, a Re-Pull by StateSOAPTransactionNumber, and a Re-Pull by a Date

Range.

 <!-- Query element for states to collect claim responses they are expecting
-->

 <xs:element name="StateEarningsVerificationResponseCollectionQuery"

 type="StateEarningsVerificationResponseCollectionQueryType"/>

 <!-- Types for query element for states to collect claim responses they

are expecting -->

 <xs:complexType

name="StateEarningsVerificationResponseCollectionQueryType">

 <xs:sequence>

 <xs:element name="StatePostalCode" type="StateAbrCodes" />

 <xs:element

name="StateEarningsVerificationResponseCollectionQueryCriteria"

type="StateEarningsVerificationResponseCollectionQueryCriteriaType"

 minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType

name="StateEarningsVerificationResponseCollectionQueryCriteriaType">

 <xs:sequence>

 <xs:element name="StateSOAPTransactionNumber"

type="xs:nonNegativeInteger" minOccurs="0"/>

 <xs:group

ref="StateEarningsVerificationResponseCollectionQueryCriteriaGroup"

minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 <xs:group

name="StateEarningsVerificationResponseCollectionQueryCriteriaGroup">

 <xs:sequence>

 <xs:element name="BrokerRecordEffectiveDateFrom"

type="CustomDateTime" />

 <xs:element name="BrokerRecordEffectiveDateTo"

type="CustomDateTime" />

 </xs:sequence>

 </xs:group>

For the straight Pull, the caller needs to supply only the state Unique ID. Although there are

different ways to verify the calling state besides this element, the Broker uses it as an additional

security check. Also, there is a requirement in the WSDL 1.1 specification that a WSDL

definition have at least one input attribute.

 72

<?xml version="1.0" encoding="US-ASCII"?>

<StateEarningsVerificationResponseCollectionQuery xmlns="https:// REDACTED

/schemas" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="https:// REDACTED /schemas REDACTED ">

 <StatePostalCode>ST</StatePostalCode>

</StateEarningsVerificationResponseCollectionQuery>

For the Re-Pull by StateSOAPTransactionNumber, the caller needs to supply the state Unique ID

and the StateSOAPTransactionNumber element out of the

StateEarningsVerificationResponseCollectionQueryCriteriaType for Earnings Verification. This

will allow the Broker to send the file defined by the StateSOAPTransactionNumber.

<?xml version="1.0" encoding="US-ASCII"?>

<StateEarningsVerificationResponseCollectionQuery xmlns="https:// REDACTED

/schemas" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="https:// REDACTED /schemas REDACTED ">

 <StatePostalCode>ST</StatePostalCode>

 <StateEarningVerificationResponseCollectionQueryCriteria>

 <StateSOAPTransactionNumber>42153</StateSOAPTransactionNumber>

 </StateEarningsVerificationResponseCollectionQueryCriteria>

</StateEarningsVerificationResponseCollectionQuery>

For the Re-Pull by date range, the caller needs to supply the state Unique

ID and the

StateEarningsVerificationResponseCollectionQueryCriteriaGroup element

out of the StateEarningsVerificationResponseCollectionQueryCriteriaType

for Earnings Verification. The Re-Pull by date range will pull all the files

that were pulled by the connector during the date range specified.

The StateEarningsVerificationResponseCollectionQueryCriteriaGroup is a

complex type that is defined as a begin date

(BrokerRecordEffectiveDateFrom), an end date

(BrokerRecordEffectiveDateTo) and a StateSOAPTransactionNumber.

The first time this operation is called, the StateSOAPTransactionNumber

must not be included and the date range that the files to be Re-Pulled are

included.

When the Broker sends back the first file in this date range, it will include in the SOAP header

the next StateSOAPTransactionNumber that it sent during that date range (in element name

NextStateSOAPTransactionNumber). In the next call to this operation, the caller must include

the NextStateSOAPTransactionNumber as the StateSOAPTransactionNumber along with the

date range. This differentiates to the Broker the next call in the series from a brand new Re-Pull

by Date request.

When the Central Broker determines that it has no more files to send back to the connector in

the given date range, the last file sent back to the connector is indicated by the Central Broker

WARNING: If the end date

in the Re-Pull by date range

is in the future, this will

cause the Central Broker to

resend all transactions

including all the resent

transactions that the Central

Broker has been delivering

due to this call, thus putting

your Connector into an

infinite loop until that date is

reached. This will tax the

Connector and the Central

Broker needlessly and must

be avoided.

 73

not including the next StateSOAPTransactionNumber (so there will not be a

NextStateSOAPTransactionNumber included in the http response SOAP header).

First Call:

<?xml version="1.0" encoding="US-ASCII"?>

<!-- test query to re-pull by date range, pulls up to 8mb of records -->

<StateEarningsVerificationResponseCollectionQuery xmlns="https:// REDACTED

/schemas" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="https:// REDACTED /schemas REDACTED ">

 <StatePostalCode>ST</StatePostalCode>

 <StateEarningsVerificationResponseCollectionQueryCriteria>

 <BrokerRecordEffectiveDateFrom>2009-01-01T00:00:00.000-

04:00</BrokerRecordEffectiveDateFrom>

 <BrokerRecordEffectiveDateTo>2009-12-31T00:00:00.000-

04:00</BrokerRecordEffectiveDateTo>

 </StateEarningsVerificationResponseCollectionQueryCriteria>

</StateEarningsVerificationResponseCollectionQuery>

Subsequent Calls:

<?xml version="1.0" encoding="US-ASCII"?>

<StateEarningsVerificationResponseCollectionQuery xmlns="https:// REDACTED

/schemas" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="https:// REDACTED /schemas REDACTED ">

 <StatePostalCode>ST</StatePostalCode>

 <StateEarningsVerificationResponseCollectionQueryCriteria>

 <StateSOAPTransactionNumber>12345678901234567890123456789012<StateSOAP

TransactionNumber>

 <BrokerRecordEffectiveDateFrom>2009-01-01T00:00:00.000-

04:00</BrokerRecordEffectiveDateFrom>

 <BrokerRecordEffectiveDateTo>2009-12-31T00:00:00.000-

04:00</BrokerRecordEffectiveDateTo>

 </StateEarningsVerificationResponseCollectionQueryCriteria>

</StateEarningsVerificationResponseCollectionQuery>

4.4.2.2.1.2 Central Broker Response to the State

When the Broker receives a “Pull” request from a State, it begins assembling all the responses

that are intended for that state. It constructs a SOAP message according to the rules for a SOAP

message (less than 8MB, one employer or TPA per message, etc.). It adds the additional field

BrokerRecordEffectiveDate to the response, which indicates the date that it was accepted into the

Broker. It then sends the responses in the HTTP response.

<StateEarningsVerificationResponseCollection xmlns="https:// REDACTED

/schemas">

 <StateEarningsVerificationResponse>

 <StateEarningsVerificationRequestRecordGUID>AAA5100000000000000000000

 74

0000001</StateEarningsVerificationRequestRecordGUID>

 <BrokerRecordTransactionNumber>5461</BrokerRecordTransactionNumber>

 <RequestingStateAbbreviation>ST</RequestingStateAbbreviation>

 <UIOfficeName>Office Name</UIOfficeName>

 <StateEmployerAccountNbr>1234567890</StateEmployerAccountNbr>

 <FEIN>123456789</FEIN>

 <CorrectedFEIN>987654321</CorrectedFEIN>

 <EmployerName>ACME</EmployerName>

 <CorrectedEmployerName>Fly By Night</CorrectedEmployerName>

 <SSN>211111111</SSN>

 <ClaimantNameWorkedAsForEmployer>John Q

Public</ClaimantNameWorkedAsForEmployer>

 <NumberofWeeksRequested>5</NumberofWeeksRequested>

 <EarningsVerificationWeekBeginDate>2010-08-

01</EarningsVerificationWeekBeginDate>

 <EarningsVerificationWeekEndDate>2010-09-

04</EarningsVerificationWeekEndDate>

 <ClaimantEmployerWorkRelationshipCode>1</ClaimantEmployerWorkRelation

shipCode>

 <EmployerEarningsCode>1</EmployerEarningsCode>

 <FirstDayWorkedinPeriod>2010-08-01</FirstDayWorkedinPeriod>

 <StillWorkingCode>2</StillWorkingCode>

 <LastDayWorked>2010-09-04</LastDayWorked>

 <EmployerSepReasonCode>1</EmployerSepReasonCode>

 <EarningsVerificationResponseComment>This employee was let go during

the time period</EarningsVerificationResponseComment>

 <WeeklyEarningsVerification>

 <WeekBeginDate>2010-08-01</WeekBeginDate>

 <WeekEndDate>2010-08-07</WeekEndDate>

 <HoursWorked>15:00</HoursWorked>

 <AmountEarnedForWeek>500.00</AmountEarnedForWeek>

 </WeeklyEarningsVerification>

 <WeeklyEarningsVerification>

 <WeekBeginDate>2010-08-08</WeekBeginDate>

 <WeekEndDate>2010-08-14</WeekEndDate>

 <HoursWorked>15:00</HoursWorked>

 <AmountEarnedForWeek>500.00</AmountEarnedForWeek>

 </WeeklyEarningsVerification>

 <WeeklyEarningsVerification>

 <WeekBeginDate>2010-08-15</WeekBeginDate>

 <WeekEndDate>2010-08-21</WeekEndDate>

 <HoursWorked>15:00</HoursWorked>

 <AmountEarnedForWeek>500.00</AmountEarnedForWeek>

 </WeeklyEarningsVerification>

 <WeeklyEarningsVerification>

 <WeekBeginDate>2010-08-22</WeekBeginDate>

 <WeekEndDate>2010-08-28</WeekEndDate>

 <HoursWorked>101:00</HoursWorked>

 <AmountEarnedForWeek>500.00</AmountEarnedForWeek>

 </WeeklyEarningsVerification>

 <WeeklyEarningsVerification>

 <WeekBeginDate>2010-08-29</WeekBeginDate>

 <WeekEndDate>2010-09-04</WeekEndDate>

 <HoursWorked>5:00</HoursWorked>

 <AmountEarnedForWeek>500.00</AmountEarnedForWeek>

 </WeeklyEarningsVerification>

 75

 <PreparerTypeCode>T</PreparerTypeCode>

 <PreparerCompanyName>ABC TPA</PreparerCompanyName>

 <PreparerTelephoneNumberPlusExt>5555555556</PreparerTelephoneNumberPl

usExt>

 <PreparerContactName>Mrs Sue Herman</PreparerContactName>

 <PreparerTitle>Claims Administrator</PreparerTitle>

 <PreparerFaxNbr>5555555557</PreparerFaxNbr>

 <PreparerEmailAddress>sue.herman@abctpa.com</PreparerEmailAddress>

 <EarningsVerificationSourceCode>9</EarningsVerificationSourceCode>

 <BrokerRecordEffectiveDate>2011-02-10T13:01:19.000-

05:00</BrokerRecordEffectiveDate>

 </StateEarningsVerificationResponse>

</StateEarningsVerificationResponseCollection>

4.4.2.2.1.3 State Acknowledgement to the Central Broker

The StateEarningsVerificationResponseCollectionAcknowledgement is initiated once the state

has received its file from the Broker. The acknowledgement must accompany every state Pull

request, as this is the manner in which the Broker knows that the state Pull was successful. This

is required even if the Broker has sent back an empty file and a MessageCode of 2. If this is not

sent back to the Broker, the next “Pull” call to the Broker will result in the same file being passed

back. The Broker will not move on to the next file until it receives a successful

acknowledgement. If the Broker receives 3 unanswered Pull requests, it will suspend any

processing of Pull requests by the State until the Broker Administrator and State Administrator

can work out the problem.

The key field in this message is the StateSOAPTransmissionNumber, which must correspond

with the StateSOAPTransmissionNumber sent back in the Broker Response. The remainder of

the message is just reporting information; the values are not used for anything at this time. If the

state does not collect this information, just return 0 for the number of records and place a valid

date in the date fields.

<?xml version="1.0" encoding="UTF-8"?>

<StateEarningsVerificationResponseCollectionAcknowledgement xmlns="https://

REDACTED /schemas" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="https:// REDACTED / REDACTED ">

<StateSOAPTransmissionNumber>12345678901234567890123456789012</StateSOAPTrans

missionNumber>

 <NumberOfResponseRecordsReceived>0</NumberOfResponseRecordsReceived>

 <NumberOfResponseRecordsInError>0</NumberOfResponseRecordsInError>

 <DateStartedReceivingTransmission>2001-12-31T12:00:00.00-

04:00</DateStartedReceivingTransmission>

 <DateFinishedReceivingTransmission>2001-12-31T12:00:00.00-

04:00</DateFinishedReceivingTransmission>

</StateEarningsVerificationResponseCollectionAcknowledgement>

4.4.2.2.2 Employer/TPA Pull

4.4.2.2.2.1 Pull from Central Broker

 76

The EmployerTPAEarningsVerificationRequestCollectionQuery is a complex query types that

allow the caller to specify one of three operations: a Pull, a Re-Pull by

EmployerTPASOAPTransactionNumber, and a Re-Pull by a Date Range.

<!-- Query element for employer to collect claim responses they are expecting

-->

 <xs:element name="EmployerTPAEarningsVerificationRequestCollectionQuery"

 type="EmployerTPAEarningsVerificationRequestCollectionQueryType"/>

 <!-- Types for query element for Employers/TPAs to collect claim requests

they are expecting -->

 <xs:complexType

name="EmployerTPAEarningsVerificationRequestCollectionQueryType">

 <xs:sequence>

 <xs:element name="UniqueID" type="UniqueIDType" />

 <xs:element

name="EmployerTPAEarningsVerificationRequestCollectionQueryCriteria"

type="EmployerTPAEarningsVerificationRequestCollectionQueryCriteriaType"

 minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType

name="EmployerTPAEarningsVerificationRequestCollectionQueryCriteriaType">

 <xs:sequence>

 <xs:element name="EmployerTPASOAPTransactionNumber"

type="xs:nonNegativeInteger" minOccurs="0" />

 <xs:group

ref="EmployerTPAEarningsVerificationRequestCollectionQueryCriteriaGroup"

minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 <xs:group

name="EmployerTPAEarningsVerificationRequestCollectionQueryCriteriaGroup">

 <xs:sequence>

 <xs:element name="BrokerRecordEffectiveDateFrom"

type="CustomDateTime" />

 <xs:element name="BrokerRecordEffectiveDateTo"

type="CustomDateTime" />

 </xs:sequence>

 </xs:group>

For the straight Pull, the caller needs to supply only the employer or TPA Unique ID. Although

there are different ways to verify the calling employer or TPA besides this element, the Broker

uses it as an additional security check. Also, there is a requirement in WSDL 1.1 that a WSDL

definition have at least one input attribute.

<?xml version="1.0" encoding="UTF-8"?>

 77

<EmployerTPAEarningsVerificationRequestCollectionQuery xmlns="https://

REDACTED /schemas" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="https:// REDACTED /schemas REDACTED ">

 <UniqueID>BR999999999</UniqueID>

</EmployerTPAEarningsVerificationRequestCollectionQuery>

For the Re-Pull by EmployerTPASOAPTransactionNumber, the caller needs to supply the

Employer/TPA Unique ID and the EmployerTPASOAPTransactionNumber element out of the

EmployerTPAEarningsVerificationResponseCollectionQueryCriteriaType. This will allow the

Broker to send the file defined by the EmployerTPASOAPTransactionNumber.

<?xml version="1.0" encoding="UTF-8"?>

<EmployerTPAEarningsVerificationRequestCollectionQuery xmlns="https://

REDACTED /schemas" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="https:// REDACTED /schemas REDACTED ">

 <UniqueID>BR999999999</UniqueID>

 <EmployerTPAEarningsVerificationRequestCollectionQueryCriteria>

<EmployerTPASOAPTransactionNumber>45459</EmployerTPASOAPTransactionNumb

er>

 </EmployerTPAEarningsVerificationRequestCollectionQueryCriteria>

</EmployerTPAEarningsVerificationRequestCollectionQuery>

For the Re-Pull by date range, the caller needs to supply the EmployerTPA

Unique ID and the

EmployerTPAEarningsVerificationResponseCollectionQueryCriteriaGroup

element out of the

EmployerTPAEarningsVerificationResponseCollectionQueryCriteriaType.

The re-pull by date range will pull all the files that were previously pulled

by the connector during the date range specified.

The

EmployerTPAEarningsVerificationResponseCollectionQueryCriteriaGroup

is a complex query type that is defined as a begin date

(BrokerRecordEffectiveDateFrom), an end date

(BrokerRecordEffectiveDateTo) and an

EmployerTPASOAPTransactionNumber.

The first time this operation is called, the

EmployerTPASOAPTransactionNumber must not be included and the date range that the files to

be Re-Pulled are included.

When the Broker sends back the first file in this date range, it will include in the SOAP header

the next EmployerTPASOAPTransactionNumber that it sent during that date range (in element

name NextEmployerTPASOAPTransactionNumber). In the next call to this operation, the caller

must include the NextEmployerTPASOAPTransactionNumber as the

WARNING: If the end date

in the Re-Pull by date range

is in the future, this will

cause the Central Broker to

resend all transactions

including all the resent

transactions that the Central

Broker has been delivering

due to this call, thus putting

your Connector into an

infinite loop until that date is

reached. This will tax the

Connector and the Central

Broker needlessly and must

be avoided.

 78

EmployerTPASOAPTransactionNumber along with the date range. This differentiates to the

Broker the next call in the series from a brand new Re-Pull by Date request.

When the Central Broker determines that it has no more files to send back to the connector in

the given date range, the last file sent back to the connector is indicated by the Central Broker

not including the next EmployerTPASOAPTransactionNumber (so there will not be a

NextEmployerTPASOAPTransactionNumber included in the http response SOAP header).

First Call:

<?xml version="1.0" encoding="UTF-8"?>

<EmployerTPAEarningsVerificationRequestCollectionQuery xmlns="https://

REDACTED /schemas" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="https:// REDACTED /schemas REDACTED ">

 <UniqueID>BR999999999</UniqueID>

 <EmployerTPAEarningsVerificationRequestCollectionQueryCriteria>

 <BrokerRecordEffectiveDateFrom>2009-01-01T00:00:00.000-

04:00</BrokerRecordEffectiveDateFrom>

 <BrokerRecordEffectiveDateTo>2010-12-31T00:00:00.000-

04:00</BrokerRecordEffectiveDateTo>

 </EmployerTPAEarningsVerificationRequestCollectionQueryCriteria>

</EmployerTPAEarningsVerificationRequestCollectionQuery>

Subsequent Calls:

<?xml version="1.0" encoding="UTF-8"?>

<EmployerTPAEarningsVerificationRequestCollectionQuery xmlns="https://

REDACTED /schemas" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="https:// REDACTED /schemas REDACTED ">

 <UniqueID>BR999999999</UniqueID>

 <EmployerTPAEarningsVerificationRequestCollectionQueryCriteria>

<EmployerTPASOAPTransactionNumber>26101</EmployerTPASOAPTransactionNumber>

 <BrokerRecordEffectiveDateFrom>2009-01-01T00:00:00.000-

04:00</BrokerRecordEffectiveDateFrom>

 <BrokerRecordEffectiveDateTo>2010-12-31T00:00:00.000-

04:00</BrokerRecordEffectiveDateTo>

 </EmployerTPAEarningsVerificationRequestCollectionQueryCriteria>

</EmployerTPAEarningsVerificationRequestCollectionQuery>

4.4.2.2.2.2 Central Broker Response to Employer/TPA

When the Broker receives a “Pull” request from an Employer/TPA, it begins assembling all the

earnings verification requests that are intended for that employer or TPA. It constructs a SOAP

message according to the rules for a SOAP message (less than 8MB, one employer or TPA per

message, etc.). It adds two additional fields to the Request - the BrokerRecordEffectiveDate and

the BrokerRecordTransactionNumber. The BrokerRecordEffectiveDate indicates the date that it

was accepted into the Broker. The BrokerRecordTransactionNumber is a unique record tracking

 79

number and must be returned on the response for this record. It then sends the requests in the

HTTP response.

<EmployerTPAEarningsVerificationRequestCollection xmlns="https:// REDACTED

/schemas">

 <EmployerTPAEarningsVerificationRequest>

 <StateEarningsVerificationRequestRecordGUID>2015000000000000000000000

0000001</StateEarningsVerificationRequestRecordGUID>

 <RequestingStateAbbreviation>ST</RequestingStateAbbreviation>

 <UIOfficeName>Office Name</UIOfficeName>

 <UIOfficePhone>5555555555</UIOfficePhone>

 <UIOfficeFax>5555555554</UIOfficeFax>

 <UIOfficeEmailAddress>james.madison@state.gov</UIOfficeEmailAddress>

 <StateEmployerAccountNbr>1234567890</StateEmployerAccountNbr>

 <FEIN>123456789</FEIN>

 <EmployerName>ACME</EmployerName>

 <SSN>213456721</SSN>

 <ClaimantLastName>Lastname</ClaimantLastName>

 <ClaimantFirstName>Firstname</ClaimantFirstName>

 <ClaimantMiddleInitial>M</ClaimantMiddleInitial>

 <ClaimantSuffix>JR</ClaimantSuffix>

 <NumberofWeeksRequested>5</NumberofWeeksRequested>

 <EarningsVerificationWeekBeginDate>2010-08-

01</EarningsVerificationWeekBeginDate>

 <EarningsVerificationWeekEndDate>2010-09-

04</EarningsVerificationWeekEndDate>

 <EarningsVerificationComments>This is a comment field for this

Earnings Verification Request</EarningsVerificationComments>

 <RequestDate>2010-10-14</RequestDate>

 <EarningsStatusCode>3</EarningsStatusCode>

 <TipsStatusCode>3</TipsStatusCode>

 <CommissionStatusCode>3</CommissionStatusCode>

 <BonusStatusCode>3</BonusStatusCode>

 <VacationStatusCode>3</VacationStatusCode>

 <SickLeaveStatusCode>3</SickLeaveStatusCode>

 <HolidayStatusCode>3</HolidayStatusCode>

 <SeveranceStatusCode>3</SeveranceStatusCode>

 <WagesInLieuStatusCode>3</WagesInLieuStatusCode>

 <EarningsVerificationResponseCommentIndicator>1</EarningsVerification

ResponseCommentIndicator>

 <ResponseDueDate>2010-10-28</ResponseDueDate>

 <EarningsVerificationSourceCode>9</EarningsVerificationSourceCode>

 <BrokerRecordTransactionNumber>6609</BrokerRecordTransactionNumber>

 <BrokerRecordEffectiveDate>2011-03-11T13:09:20.000-

05:00</BrokerRecordEffectiveDate>

 </EmployerTPAEarningsVerificationRequest>

</EmployerTPAEarningsVerificationRequestCollection>

4.4.2.2.2.3 Employer/TPA Acknowledgement to Central Broker

The EmployerTPAEarningsVerificationRequestCollectionAcknowledgement is initiated once

the employer or TPA has received its file from the Broker. The acknowledgement must

accompany every employer or TPA Pull request, as this is the manner in which the Broker

knows that the Employer/TPA Pull was successful. This is required even if the Broker has sent

back an empty file and a MessageCode of 2. If this is not sent back to the Broker, the next

 80

“Pull” call to the Broker will result in the same file being passed back. The Broker will not move

on to the next file until it receives a successful acknowledgement. If the Broker receives 3

unanswered Pull requests, it will suspend any processing of Pull requests by the Employer/TPA

until the Broker Administrator and Employer/TPA Administrator can work out the problem.

The key field in this message is the EmployerTPASOAPTransmissionNumber, which must

correspond with the EmployerTPASOAPTransmissionNumber sent back in the Broker

Response. The remainder of the message is just reporting information; the values are not used

for anything at this time. If the EmployerTPA does not collect this information, just return 0 for

the number of records and place a valid date in the date fields.

<?xml version="1.0" encoding="UTF-8"?>

<EmployerTPAEarningsVerificationRequestCollectionAcknowledgement

xmlns="https:// REDACTED /schemas"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="https:// REDACTED /schemas REDACTED ">

 <EmployerTPASOAPTransmissionNumber>3400</EmployerTPASOAPTransmissionNumber>

 <NumberOfRequestRecordsReceived>4</NumberOfRequestRecordsReceived>

 <NumberOfRequestRecordsInError>0</NumberOfRequestRecordsInError>

 <DateStartedReceivingTransmission>2001-12-31T12:00:00.000-

04:00</DateStartedReceivingTransmission>

 <DateFinishedReceivingTransmission>2001-12-31T12:00:00.000-

04:00</DateFinishedReceivingTransmission>

</EmployerTPAEarningsVerificationRequestCollectionAcknowledgement>

4.5 SOAP Action

From the W3C, the SOAPAction component in SOAP 1.1 is defined as follows:

“The SOAPAction HTTP request header field can be used to indicate the intent of the SOAP

HTTP request. The value is a URI identifying the intent. SOAP places no restrictions on the

format or specificity of the URI or that it is resolvable. An HTTP client MUST use this header

field when issuing a SOAP HTTP Request.”

The SOAPAction MUST be specified in the SOAP message. The particular SOAP Action

required for each message is specified in the WSDL.

There are six SOAP Actions that are defined in SIDES for Separation Information:

1. postStateSeparationRequestCollection

2. pullStateSeparationResponseCollection

3. pullStateSeparationResponseCollectionAcknowledgement

 81

4. postEmployerTPASeparationResponseCollection

5. pullEmployerTPASeparationRequestCollection

6. pullEmployerTPASeparationRequestCollectionAcknowledgement

There are six SOAP Actions that are defined in SIDES for Earnings Verification:

1. postStateEarningsVerificationRequestCollection

2. pullStateEarningsVerificationResponseCollection

3. pullStateEarningsVerificationResponseCollectionAcknowledgement

4. postEmployerTPAEarningsVerificationResponseCollection

5. pullEmployerTPAEarningsVerificationRequestCollection

6. pullEmployerTPAEarningsVerificationRequestCollectionAcknowledgement

4.6 WSDL

The Web Services Description Language (WSDL) is an XML-based language that provides a

model for describing Web services. WSDL defines an XML grammar for describing network

services as collections of communication endpoints capable of exchanging messages. WSDL

service definitions provide documentation for distributed systems and serve as a recipe for

automating the details involved in applications communication.

The WSDL for SIDES is broken into two files per Standard Format. StateBroker.wsdl for

Separation Information and EarningsVerificationStateBroker.wsdl for Earnings Verification

describe the interfaces exposed to the States from the Broker. EmployerTPABroker.wsdl for

Separation Information and EarningsVerificationEmployerTPABroker.wsdl for Earnings

Verification describe the interfaces exposed to the employer or /TPA from the Broker. Note that

the Push to the employer or TPA is not described in these WSDLs because that function belongs

in the WSDL for the connector Web Service. (See the full WSDL below for a complete

description.)

 State Separation Information WSDL:

REDACTED

 Employer/TPA Separation Information WSDL:

REDACTED

 State Earnings Verification WSDL:

REDACTED

 82

 Employer/TPA Earnings Verification WSDL:

REDACTED

There is no Policy information contained within these WSDLs. This was done for

interoperability reasons. If a connector is using a technology that requires the use of Policy

information, a state WSDL has been provided within the JAX-WS Model Connector.

4.6.1 WSDL XSD

Along with each WSDL, there are XSD files that define the elements in the WSDL. These

schema files are StateTransmissionQuery.xsd and EmployerTPATransmissionQuery.xsd for

Separation Information, and EarningsVerificationStateTransmissionQuery.xsd and

EarningsVerificationEmployerTPATransmissionQuery.xsd for Earnings Verification. There is

one support file - TransmissionQueryCommonElements.xsd – used by both exchanges. The

XSDs for the current data elements can be found at:

 Separation Information

REDACTED

 Earnings Verification

REDACTED

 Common Elements

REDACTED

One XSD file, combined.xsd, is used to include other XSD files in the system and it does not

contain any additional information. This file is required due to a problem accessing the https://

REDACTED /schemas namespace in multiple files within the Java libraries used in SIDES. The

combined.xsd file is used internally by the Central Broker to allow XSD checks to take place

on all the SOAP messages and records sent in by the connectors.

The combined.xsd file may be used by connector software, but it is not necessary if the

technology and libraries used in the connectors’ implementation do not require it. The

combined.xsd file can be found at:

https:// REDACTED /schemas/combined.xsd

4.6.2 State WSDL

4.6.2.1 State Post WSDL

4.6.2.1.1 Separation Information State Post WSDL

The WSDL for the state Post operation in Separation Information is defined as

<wsdl:operation name="postStateSeparationRequestCollection">

 <soap:operation soapAction="postStateSeparationRequestCollection" />

 <wsdl:input name="StateSeparationRequestCollection">

 83

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output name="StateSeparationRequestCollectionAcknowledgement">

 <soap:body use="literal" />

 </wsdl:output>

</wsdl:operation>

The input (HTTP request) to this operation is a StateSeparationRequestCollection as defined in

SeparationRequest.xsd.

The output (HTTP response) is a StateSeparationRequestCollectionAcknowledgement as defined

in the SeparationRequest.xsd.

4.6.2.1.2 Earnings Verification State Post WSDL

The WSDL for the state Post operation in Earnings Verification is defined as

<wsdl:operation name="postStateEarningsVerificationRequestCollection">

 <wsdl:input message="tns:StateEarningsVerificationRequestCollection"

 name="StateEarningsVerificationRequestCollection">

 </wsdl:input>

 <wsdl:output

message="tns:StateEarningsVerificationRequestCollectionAcknowledgement"

 name="StateEarningsVerificationRequestCollectionAcknowledgement">

 </wsdl:output>

</wsdl:operation>

The input (HTTP request) to this operation is a StateEarningsVerificationRequestCollection as

defined in EarningsVerificationRequest.xsd.

The output (HTTP response) is a StateEarningsVerificationRequestCollectionAcknowledgement

as defined in the EarningsVerificationRequest.xsd.

4.6.2.2 State Pull WSDL

4.6.2.2.1 Separation Information State Pull WSDL

The WSDL for the state Pull operation in Separation Information is defined as:

<wsdl:operation name="pullStateSeparationResponseCollection">

 <soap:operation soapAction="pullStateSeparationResponseCollection" />

 <wsdl:input name="StateSeparationResponseCollectionQuery">

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output name="StateSeparationResponseCollection">

 <soap:body use="literal" />

 </wsdl:output>

</wsdl:operation>

The input (HTTP request) to this operation is a StateSeparationResponseCollectionQuery as

defined in StateTransmissionQuery.xsd.

 84

The output (HTTP response) is a StateSeparationResponseCollection as defined in the

SeparationResponse.xsd.

4.6.2.2.2 Earnings Verification State Pull WSDL

The WSDL for the state Pull operation in Earnings Verification is defined as:

<wsdl:operation name="pullStateEarningsVerificationResponseCollection">

 <wsdl:input

message="tns:StateEarningsVerificationResponseCollectionQuery"

 name="StateEarningsVerificationResponseCollectionQuery">

 </wsdl:input>

 <wsdl:output message="tns:StateEarningsVerificationResponseCollection"

 name="StateEarningsVerificationResponseCollection">

 </wsdl:output>

</wsdl:operation>

The input (HTTP request) to this operation is a

StateEarningsVerificationResponseCollectionQuery as defined in

EarningsVerificationStateTransmissionQuery.xsd.

The output (HTTP response) is a StateEarningsVerificationResponseCollection as defined in the

EarningsVerificationResponse.xsd.

4.6.3 Employer/TPA WSDL

4.6.3.1 EmployerTPA Post WSDL

4.6.3.1.1 Separation Information EmployerTPA Post WSDL

The WSDL for the employer or TPA Post operation in Separation Information is defined as:

<wsdl:operation name="postEmployerTPASeparationResponseCollection">

 <soap:operation

soapAction="postEmployerTPASeparationResponseCollection" />

 <wsdl:input name="EmployerTPASeparationResponseCollection">

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output

name="EmployerTPASeparationResponseCollectionAcknowledgement">

 <soap:body use="literal" />

 </wsdl:output>

</wsdl:operation>

The input (HTTP request) to this operation is an EmployerTPASeparationResponseCollection as

defined in SeparationResponse.xsd.

The output (HTTP response) is an

EmployerTPASeparationResponseCollectionAcknowledgement as defined in the

SeparationResponse.xsd.

4.6.3.1.2 Earnings Verification EmployerTPA Post WSDL

 85

The WSDL for the employer or TPA Post operation in Earnings Verification is defined as:

<wsdl:operation name="postEmployerTPAEarningsVerificationResponseCollection">

 <wsdl:input message="tns:EmployerTPAEarningsVerificationResponseCollection"

 name="EmployerTPAEarningsVerificationResponseCollection">

 </wsdl:input>

 <wsdl:output

message="tns:EmployerTPAEarningsVerificationResponseCollectionAcknowledgement

"

name="EmployerTPAEarningsVerificationResponseCollectionAcknowledgement">

 </wsdl:output>

</wsdl:operation>

The input (HTTP request) to this operation is an

EmployerTPAEarningsVerificationResponseCollection as defined in

EarningsVerificationResponse.xsd.

The output (HTTP response) is an

EmployerTPAEarningsVerificationResponseCollectionAcknowledgement as defined in the

EarningsVerificationResponse.xsd.

4.6.3.2 EmployerTPA Pull WSDL

4.6.3.2.1 Separation Information EmployerTPA Pull WSDL

The EmployerTPA Pull operation for Separation Information is defined as

<wsdl:operation name="pullEmployerTPASeparationRequestCollection">

 <soap:operation soapAction="pullEmployerTPASeparationRequestCollection" />

 <wsdl:input name="EmployerTPASeparationRequestCollectionQuery">

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output name="EmployerTPASeparationRequestCollection">

 <soap:body use="literal" />

 </wsdl:output>

</wsdl:operation>

The input (HTTP request) to this operation is an

EmployerTPASeparationRequestCollectionQuery as defined in

EmployerTPATransmissionQuery.xsd.

The output (HTTP response) is an EmployerTPASeparationRequestCollection as defined in the

SeparationRequest.xsd.

4.6.3.2.2 Earnings Verification EmployerTPA Pull WSDL

The EmployerTPA Pull operation for Earnings Verification is defined as

<wsdl:operation name="pullEmployerTPAEarningsVerificationRequestCollection">

 <wsdl:input

message="tns:EmployerTPAEarningsVerificationRequestCollectionQuery"

 name="EmployerTPAEarningsVerificationRequestCollectionQuery">

 </wsdl:input>

 86

 <wsdl:output message="tns:EmployerTPAEarningsVerificationRequestCollection"

 name="EmployerTPAEarningsVerificationRequestCollection">

 </wsdl:output>

</wsdl:operation>

The input (HTTP request) to this operation is an

EmployerTPAEarningsVerificationRequestCollectionQuery as defined in

EarningsVerificationEmployerTPATransmissionQuery.xsd.

The output (HTTP response) is an EmployerTPAEarningsVerificationRequestCollection as

defined in the EarningsVerificationRequest.xsd.

 87

5 C – BUILD THE CONNECTOR: SECURING THE MESSAGE

REDACTED

 88

6 D - CONNECT WITH THE CENTRAL BROKER: SENDING THE MESSAGE

6.1 Sending a message

The destination address for all messaging with the Central Broker for the Separation

Information exchange is:

REDACTED

The destination address for all messaging with the Central Broker for the Earnings Verification

exchange is:

REDACTED

6.2 Sample SOAP message sent

Below is a sample of a State SOAP message that a connector has sent to the Broker for

Separation Information:

Sample State SOAP Message

REDACTED

6.3 Acknowledgements

The acknowledgement in any of the message types is an important part of the transaction. They

let the receiver know that the file has successfully made it to its destination, regardless of the

individual records success or failure. If an acknowledgement is not received within 15 minutes of

sending a message, failure must be assumed and the message should be sent again.

A message failure and re-send could be an infinite cycle if one of the connectors is having

difficulty. Therefore, connectors must be implemented to limit this process to occur only three

times (an initial time plus two retries) in an automated fashion before contacting the connector’s

SIDES administrator. The state, employer, or TPA administrator can then begin debugging the

problem. If the problem was noted by the Central Broker, the SIDES Broker Administrator

will be notified and error resolution will be started on the Central Broker side also.

6.4 Non-Broker Returns

There are some messages that a state, employer, or TPA connector may receive when attempting

to communicate with the Central Broker that are non-standard Central Broker return

messages. These messages were not discussed earlier in this document as part of the message

exchange with the Central Broker as they are not message related but, rather, are overall

system-related return messages. These must be handled by all Central Broker client connectors.

 89

1. “UI SIDES Server Error has occurred. Please try again in a few minutes or contact your

UI SIDES Administrator for assistance.”

REDACTED

2. A no response. A [404] Http Error.

REDACTED

 90

7 E – CONNECT WITH THE CENTRAL BROKER: TESTING CONNECTOR

SOFTWARE

The connector software must be designed, coded and thoroughly tested to ensure correct

functionality when interfacing with the Central Broker. Connector testing responsibilities are

highlighted as well as key points for consideration when testing your connector software. To

support connector testing, a set of tools are available to aid in the development and testing

process.

7.1 Connector Responsibility

It is the state or employer/TPA’s responsibility to fully test their SIDES implementation.

Connector testing includes the backend system components, system interfaces, and the connector

software that interacts with the Central Broker. The connector’s process for testing is not

prescribed as different organizations must follow their own testing procedures and standards.

However, to test the connector with the Central Broker, the SIDES certification test process (see

Section 8) including injection of XML certification test data (see section 9.2.2.1) must be

followed.

This Developer Guide not only provides developers with a roadmap for constructing the

connector, but also serves as a tool the test team may use to support comprehensive testing of the

connector software. The following list highlights key points to be considered when testing your

connector software:

 Creation of the Request or Response XML

o All the data required in the Standard Format is being accessed correctly

 The XML data format (Standard Format)

o XSD violations of the Standard Format must be trapped and handled on the connector

side.

o For a State using the Separation Information Standard Format, all the

ClaimantSepReasonCodes have been tested along with any business rule

dependencies on the individual ClaimantSepReasonCode.

o For the employer/TPAs using the Separation Information Standard Format, all the

EmployerSepReasonCodes have been tested along with any business rule

dependencies on the individual EmployerSepReasonCode.

o Other values that are called out in the Standard Format. A test case should not only

be made for the negative (error) conditions, but also the positive (non error)

conditions – especially around the boundaries.

o The entire set of error codes, which result from business rule violations, must be

handled. This must be performed to cover the case where an error code is received

 91

internally before the message is generated and after the message is sent and the error

code comes back in the acknowledgment.

 SOAP concepts

o All of the required custom headers are included with the message.

o The SOAP action is part of the https message.

o Generation of the digital signature and encryption occurs correctly.

o The message timestamp has a 15 minute time to live.

 Message Codes

o Central Broker generated message codes on the acknowledgment of a Post and an

http response on the Pull.

o Connector generated message codes on the acknowledgement of a Pull.

 Duplicate records

o Duplicate records Pulled in the same file and in a different file.

7.2 Tools

This section describes the tools available to aid development and testing of the connector

software. The first tool provided is a set of state and employer/TPA Model Connectors. The

Model Connectors serve two main purposes: 1) to provide a road map in creating the connector

software and 2) to provide the connector with an “opposing” endpoint they can send/receive

messages to and from.

The second tool provided is a business rule processor tool (BRPT). The BRPT also has two

uses. The first use is to provide a simulated Central Broker, allowing a connector to simulate

exchanging messages with the Central Broker while their connection piece is being

constructed, prior to connection the real Central Broker. The other use of the BRPT is to verify

the connector software business rules are behaving in the same manner as the Central Broker.

7.2.1 Model Connectors

The state and employer/TPA Model Connectors are a set of tools that allow a proven method of

communicating with the SIDES Broker right out of the box. These components may be used as a

“black-box”, which may be linked with the Endpoint’s back-end software to facilitate integration

with the Central Broker. Alternatively, SIDES connector developers may construct their own

SIDES connector, and use the Model Connector to help with all aspects to connect with the

Central Broker including security and the proper construction of the SOAP message.

 92

The Model Connectors are available in the following technologies:

 Spring-WS - Java

 JAX-WS – Java

 Microsoft .Net – C#

The Model Connectors are designed to operate as a “black-box” so states, employers, and TPAs

do not have to build their own connector software. Please be aware that the Model Connectors

will be updated to accommodate new SIDES exchanges as they are completed. Also, periodic

updates to the Model Connectors may be released to address software enhancements or to

remediate defects. Source code for the Model Connectors are provided so states, employers, or

TPAs may make adjustments (if necessary) to operate within their environment. Please be aware

that the SIDES Team will not carry forward any custom software changes made to the Model

Connectors, and the Endpoints must re-apply the changes to new versions of the Model

Connector.

Prior to deployment of the Model Connector into production operations, the state, employer, or

TPA, must conduct testing with real scenarios/data against the SIDES Broker Test environment.

This testing is imperative to ensure:

 Proper integration with the back-end system

 Correct processing and interpretation of log files, request files, and response files

 There are no unanticipated data sets, which may not be processed by the Model

Connector.

Contact the Broker Team to discuss any Model Connector enhancements or to report software

defects.

The Model Connectors can also provide an opposite endpoint (employer/TPA for states; states

for employer/TPAs) to help with the developer’s end-to-end testing without the need for an

actual endpoint to be participating.

As an example, consider where ‘State X’ is in initial construction of its software. ‘State X’ needs

to produce messages and consume messages through the Central Broker. ‘State X’ wants to

know what the messages that they send to the employer/TPA look like, and they need an

employer/TPA to answer their requests in order to test their consumption portion. The emulated

employer/TPA can act as the endpoint that the State is communicating without relying on an

actual employer/TPA system on the other side of the Broker.

‘State X’ can accomplish this simulation in the following manner.

 93

1. ‘State X’ creates request files to be sent to their emulated employer/TPA,

‘employer/TPA Y’. Note: The emulated ‘employer/TPA Y’ has already been created in

the Central Broker by the Broker Administrator.

2. ‘State X’ Posts the file to ‘employer/TPA Y’.

3. ‘State X’, using the employer/TPA Model Connector, Pulls messages from the Central

Broker as ‘employer/TPA Y’. This gives ‘State X’ the

BrokerRecordTransactionNumbers of all of the requests.

4. ‘State X’ creates responses to their own requests, filling in the backfilled data as required

by employer/TPAs.

5. Using the employer/TPA Model Connector, ‘State X’ Posts all of ‘employer/TPA Y’’s

responses back to themselves.

6. ‘State X’ can then Pull responses from the Central Broker which will include

‘employer/TPA Y’’s responses.

For the Pull action, an acknowledgement is automatically sent to the Broker after a Pull action

downloads the file from the Broker. This ensures the Model Connector completes the full Pull

action.

The Model Connector demonstrates how a state can access the UI SIDES Broker Web services

using the different Model Connector libraries. It can accomplish both a Post to the Central

Broker or a Pull from the Central Broker. There are two ways it can accomplish these actions.

The first method is by calling the Model Connector with the XML payload and the SOAP header

values as input. The second method is by calling the Model Connector with an ASCII data file

that contains the same data as within the XML file and the SOAP Headers. Figure 1 and Figure 2

are detailed diagrams of steps taken by the State, the Model Connector and the Central Broker

for both the Post and Pull with the ASCII file. The ASCII file is a new format and a discussion

of this format is below.

 94

Figure 1. Model Connector Post for ASCII Files

 95

Figure 2. Model Connector Pull for ASCII Files

 96

7.2.1.1 Setup State Model Connector

To begin using the State Model Connector, the state must first download the software from the

sides.itsc.org website.

There are two options for download of the State Model Connector.

The first option is the ‘Black Box’ approach. This download contains only the executable file(s)

and any support files and/or directories required to run the employer Model Connector. The data

directory contains some test files used to construct the Model Connector. The readme.txt file

indicates how to execute the application, which is discussed below.

Option 2 is the full State Model Connector project. This download contains a directory that has

the executable files and the source files. The State Model Connector project contains all files

required to be loaded into the Eclipse IDE or Visual Studio 2010 with minimal adjustments

required.

To learn more about the setup and running of the particular technology, please see the section

below that corresponds to the technology desired.

7.2.1.1.1 State Requirements for ASCII file

All of the state requirements detailed in Part B of this document are still applicable for the ASCII

file. In particular, when creating the ASCII file, you must make sure that it falls under the 8

megabyte limit or it will be rejected by the Central Broker. Attachments are handled the same

way within the ASCII file as they are within the XML; the software expects attachments to be

encoded into the ASCII file. The one minor difference between the XML and ASCII file is that

when placing an encoded file into the ASCII file it must be a continuous string with no newline

characters in it (must not be chunked). If the ASCII file contains newlines characters in the

encoded attachment, the data file reader will not work correctly.

7.2.1.1.2 Request Input

Input files are specified on the command line used to execute the Model Connector. See

examples below.

7.2.1.1.3 Response Output

The SIDES Model Connector can provide responses in ASCII format, PDF, or both ASCII and

PDF. In all cases, the responses are available in XML format. ASCII and PDF output files are

specified in the runtime configuration parameters. The XML response output file is contained in

the results Log file, whose path is specified in the runtime configuration parameters.

7.2.1.1.4 ASCII File Specification – Separation Information Post

The ASCII file ingested by the Model Connector on the Post has two main sections. Section 1

(SOAP Headers) describes the SOAP Headers that must be placed on the SOAP message. The

 97

second section (Request) describes the actual request records. These are discussed further

below. Any line in the ASCII specification that is empty or contains a # character as the first

character is ignored. The # allows comments to be placed in the file.

Soap

Headers

Request

#1

End of

Request

#1

 98

The SOAP headers section of the ASCII file contains the routing information discussed in

section 4.3-SOAP Custom Headers. It must contain the following information:

Table 32 - State Post to Broker

Header Element Required Definition Example

To Y The Unique ID of the employer or TPA

to which the message is intended

For a web services request, the ‘To’ field

will always contain ‘BR’ followed by

nine digits. For a SEW request, the ‘To’

field will contain the FEIN.

BR000000003

From Y The Unique ID of the state where the

message originated

UT

FileGUID

Y The state-generated GUID applied to this

message that can uniquely identify this

file

Size is 32 hexadecimal digits

A42A1FBDAC9549

AC7D8D3F45E404

0319

For SEW requests, the SOAP header must contain the SEIN and the PIN.

Table 33 - State Post to Broker - SIDES Employer Website

Header Element Required Definition Example

SEIN

N The SEIN of the employer or TPA to

which the message is intended. For those

states that do not use the SEIN, this must

equal the FEIN

Size is up to 20 digits

123456789

PIN N The PIN to which the state wants to

assign this request for this employer or

TPA

Size is up to 20 characters

435222169876

 99

The Request section of the ASCII file contains the actual request record or records. There can be

multiple request records in a file. Each request record must start with the element name

StateRequestRecordGUID. Within the record itself, there can also be repeatable attachment

sections (up to 10 attachments according to the Separation Information specification). The

attachment section must contain all of the information on a particular attachment before moving

on to the next attachment. Each line in the record contains the Data Element Name as described

in the Implementation Guide followed by a colon (:) followed by the value given to that element

name. The value must be contained all on a single line. If the data element value is null, it must

not be in the ASCII file.

7.2.1.1.5 ASCII File Specification – Separation Information PULL

The ASCII file ingested by the Model Connector on the Pull has two main sections. Section 1

describes the SOAP Headers, which must be placed on the SOAP message. Section 2 describes

the Pull Collection Query. These are discussed below. Any line that is empty or has a #

character as the first character in it is ignored. The # allows comments to be placed in the file.

There are three PULL formats that will accomplish the same thing as their XML counterparts

described in section 4.3.2-State Pull.

 Regular Pull

 Pull By State Soap Transaction Number

 100

 Pull By Date

If specified in the configuration file, the State Model Connector will return the responses in an

ASCII format. The top of the file will contain the SOAP Headers in the response file.

Table 34 - Broker Response to Request (Regular Pull)

Header Element Definition Example

To The Unique ID of the state that requested the

Pull

UT

From The Unique ID of the employer or TPA from

which these response records originated

BR000000001

StateSOAPTransactionNu

mber

The unique number assigned to this file by the

Broker

3565

MessageCode The acknowledgement code applied to the

message that indicates success or failure of the

entire transmission. See 4.2.5 for further

information on Message Codes.

Size is one digit

1

After the SOAP headers, the ASCII file will contain all the records returned in the pull call. The

format will be the same as described in the post, where there is an element name followed by a

 101

colon (:) followed by the value being returned. A complete file specification containing all data

elements is not provided as the returned file is dynamic, based upon the business rules. SIDES

participants should rely on the standard format to ensure all response values are ingested by the

back-end system. The following is an example Response file.

#SOAP Headers

To:ST

From:BR999999999

StateSOAPTransactionNumber:142998

MessageCode:1

#Separation Response

StateRequestRecordGUID:30000000000000000000000000004005

BrokerRecordTransactionNumber:2013891

SSN:560348479

ClaimEffectiveDate:2007-06-04

ClaimNumber:378621

StateEmployerAccountNbr:0065560

CorrectedEmployerName:J C Penny

CorrectedStateEmployerAccountNbr:0123456789

CorrectedFEIN:987654321

OtherSSN:660348479

ClaimantNameWorkedAsForEmployer:Charlie Wilson

ClaimantJobTitle:Customer Service Associate

SeasonalEmploymentInd:Y

TotalEarnedWagesNeededInd:2

TotalWeeksWorkedNeededInd:2

AverageWeeklyWage:125.00

EmployerSepReasonCode:5

ReturnToWorkInd:N

ReturnToWorkDate:2010-01-01

WorkingAllAvailableHoursInd:Y

#Remuneration occurence

RemunerationTypeCode:5

RemunerationAmountPerPeriod:999.99

RemunerationPeriodFrequencyCode:W

DateRemunerationIssued:2007-10-15

EmployerAllocationInd:Y

AllocationBeginDate:2007-10-15

AllocationEndDate:2007-10-22

AverageNumberofHoursWorkedperWeek:40

MandatoryPension:N

ContributoryorNotContributoryClaimantInd:Y

ClaimantPensionContributionPercent:100

EmployerSepReasonComments:EmployerSepReasonComments

DischargeReasonCode:5

FinalIncidentReason:FinalIncidentReason

FinalIncidentDate:2007-10-22

ViolateCompanyPolicyInd:N

DischargePolicyAwareExplanationCode:W

WhoDischargedName:Charlie Wilson

 102

WhoDischargedTitle:Customer Service Associate

VoluntarySepReasonCode:5

HiringAgreementChangesCode:5

HiringAgreementChangesComments:HiringAgreementChangesComments

ClaimantActionsToAvoidQuitInd:Y

ActionTakenComments:ActionTakenComments

ContinuingWorkAvailableInd:Y

VoluntarySepReasonComments:The claimant quit without giving JCPenney a

reason.

PreparerTypeCode:E

PreparerCompanyName:J C Penny

PreparerTelephoneNumberPlusExt:9724312108

PreparerContactName:Ed A Jones

PreparerTitle:Project Manager

PreparerFaxNbr:9725312108

PreparerEmailAddress:edjones@jcpenneytest.com

BrokerRecordEffectiveDate:2011-04-08T15:28:41-0400

#Separation Response

StateRequestRecordGUID:30000000000000000000000000004003

BrokerRecordTransactionNumber:2013889

SSN:560348477

ClaimEffectiveDate:2007-06-04

ClaimNumber:388620

StateEmployerAccountNbr:0065560

CorrectedEmployerName:J C Penny

CorrectedStateEmployerAccountNbr:0123456789

CorrectedFEIN:987654321

OtherSSN:660348477

ClaimantNameWorkedAsForEmployer:Andy Wilson

ClaimantJobTitle:Customer Service Associate

SeasonalEmploymentInd:N

EmployerReportedClaimantFirstDayofWork:2007-10-11

EmployerReportedClaimantLastDayofWork:2007-10-14

EffectiveSeparationDate:2007-10-14

TotalEarnedWagesNeededInd:3

TotalWeeksWorkedNeededInd:3

AverageWeeklyWage:125.00

EmployerSepReasonCode:3

ReturnToWorkInd:N

WorkingAllAvailableHoursInd:N

NotWorkingAvailableHoursReason:NotWorkingAvailableHoursReason

LaborDisputeTypeInd:L

#Remuneration occurence

RemunerationTypeCode:3

RemunerationAmountPerPeriod:999.99

RemunerationPeriodFrequencyCode:B

DateRemunerationIssued:2007-10-15

EmployerAllocationInd:N

AllocationBeginDate:2007-10-15

AllocationEndDate:2007-10-22

AverageNumberofHoursWorkedperWeek:40

MandatoryRetirementInd:N

 103

MandatoryPension:N

ContributoryorNotContributoryClaimantInd:N

ClaimantPensionContributionPercent:100

DischargeReasonCode:3

FinalIncidentReason:FinalIncidentReason

FinalIncidentDate:2007-10-13

ViolateCompanyPolicyInd:N

DischargePolicyAwareInd:N

DischargePolicyAwareExplanationCode:V

#Prior Incident occurence

PriorIncidentDate:2007-10-10

PriorIncidentReason:None

PriorIncidentWarningInd:Y

PriorIncidentWarningDate:2007-10-10

PriorIncidentWarningDescription:Verbal

WhoDischargedName:Andy Wilson

WhoDischargedTitle:Customer Service Associate

VoluntarySepReasonCode:3

HiringAgreementChangesCode:3

HiringAgreementChangesComments:HiringAgreementChangesComments

ClaimantActionsToAvoidQuitInd:N

ContinuingWorkAvailableInd:N

PreparerTypeCode:T

PreparerCompanyName:J C Penny

PreparerTelephoneNumberPlusExt:9724312108

PreparerContactName:Ed A Jones

PreparerTitle:Project Manager

PreparerFaxNbr:9725312108

PreparerEmailAddress:edjones@jcpenneytest.com

BrokerRecordEffectiveDate:2011-04-08T15:28:39-0400

#Separation Response

StateRequestRecordGUID:30000000000000000000000000004004

BrokerRecordTransactionNumber:2013890

SSN:560348478

ClaimEffectiveDate:2007-06-04

ClaimNumber:388620

StateEmployerAccountNbr:0065560

EmployerReportedClaimantFirstDayofWork:2007-10-11

EmployerReportedClaimantLastDayofWork:2007-10-14

EffectiveSeparationDate:2007-10-14

TotalEarnedWagesNeededInd:3

TotalWeeksWorkedNeededInd:3

AverageWeeklyWage:125.00

EmployerSepReasonCode:4

ReturnToWorkInd:Y

ReturnToWorkDate:2010-01-01

WorkingAllAvailableHoursInd:Y

#Remuneration occurence

RemunerationTypeCode:4

RemunerationAmountPerPeriod:999.99

RemunerationPeriodFrequencyCode:M

 104

DateRemunerationIssued:2007-10-15

EmployerAllocationInd:Y

AllocationBeginDate:2007-10-15

AllocationEndDate:2007-10-22

AverageNumberofHoursWorkedperWeek:40

MandatoryRetirementInd:N

MandatoryPension:N

ContributoryorNotContributoryClaimantInd:Y

ClaimantPensionContributionPercent:100

EmployerSepReasonComments:EmployerSepReasonComments

DischargeReasonCode:4

FinalIncidentReason:FinalIncidentReason

FinalIncidentDate:2007-10-13

ViolateCompanyPolicyInd:Y

DischargePolicyAwareInd:Y

DischargePolicyAwareExplanationCode:W

#Prior Incident occurence

PriorIncidentDate:2007-10-10

PriorIncidentReason:None

PriorIncidentWarningInd:Y

PriorIncidentWarningDate:2007-10-10

PriorIncidentWarningDescription:Verbal

WhoDischargedName:Brian Wilson

WhoDischargedTitle:Customer Service Associate

VoluntarySepReasonCode:4

HiringAgreementChangesCode:4

HiringAgreementChangesComments:HiringAgreementChangesComments

ClaimantActionsToAvoidQuitInd:Y

ActionTakenComments:ActionTakenComments

ContinuingWorkAvailableInd:Y

PreparerTypeCode:E

PreparerCompanyName:J C Penny

PreparerTelephoneNumberPlusExt:9724312108

PreparerContactName:Ed A Jones

PreparerTitle:Project Manager

PreparerFaxNbr:9725312108

PreparerEmailAddress:edjones@jcpenneytest.com

BrokerRecordEffectiveDate:2011-04-08T15:28:40-0400

7.2.1.1.6 ASCII File Specification – Earnings Verification POST

The ASCII file ingested by the Model Connector on the Post has two main sections to it. Section

1 describes the SOAP Headers that must be placed on the SOAP message. Section 2 describes

the actual request record(s). These are discussed below. Any line that is empty or has a #

character as the first character in it is ignored. The # allows comments to be placed in the file.

 105

The first part of the ASCII file contains the SOAP headers. This is the routing information

discussed in section 4.3-SOAP Custom Headers. It must contain the following information:

Table 35 - State Post to Broker

Header Element Required Definition Example

To Y The Unique ID of the employer or TPA

to which the message is intended

For a web services request, the ‘To’ field

will always contain ‘BR’ followed by

BR000000003

Soap

Headers

Request

#1

End of

Request

#1

 106

Header Element Required Definition Example

nine digits. For a SEW request, the ‘To’

field will contain the FEIN.

From Y The Unique ID of the state where the

message originated

UT

FileGUID

Y The state-generated GUID applied to this

message that can uniquely identify this

file

Size is 32 hexadecimal digits

A42A1FBDAC9549

AC7D8D3F45E404

0319

For SEW requests, the PIN is required.

Table 36 - State Post to Broker - SIDES Employer Website

Header Element Required Definition Example

PIN N The PIN to which the state wants to

assign this request for this employer or

TPA

Size is up to 20 characters

435222169876

The second part of the ASCII file is the actual request record(s). There can be multiple request

records in a file. Each request record must begin with the element name

StateEarningsVerificationRequestRecordGUID. Each line in the record contains the Data

Element Name as described in the Implementation Guide followed by a colon (:) followed by the

value given to that element name. The value must be contained all on a single line. If the data

element value is null, it must not be in the ASCII file.

7.2.1.1.7 ASCII File Specification – Earnings Verification PULL

The ASCII file ingested by the Model Connector on the Pull has two main sections to it. The

first section describes the SOAP Headers that must be placed on the SOAP message. The second

section describes the Pull Collection Query. These are discussed below. Any line that is empty

or has a # character as the first character in it is ignored. The # allows comments to be placed in

the file.

There are three PULL formats that will accomplish the same thing as their XML counterparts

described in section 4.3.2-State Pull.

 Regular Pull

 107

 Pull By State Soap Transaction Number

 Pull By Date

If specified in the configuration file, the State Model Connector will return the responses in an

ASCII format. The top of the file will contain the SOAP Headers in the response file.

Table 37 - Broker Response to Request (Regular Pull)

Header Element Definition Example

To The Unique ID of the state that requested the

Pull

UT

From The Unique ID of the employer or TPA from

which these response records originated

BR000000001

 108

Header Element Definition Example

StateSOAPTransactionNu

mber

The unique number assigned to this file by the

Broker

3565

MessageCode The acknowledgement code applied to the

message that indicates success or failure of the

entire transmission. See 4.2.5 for further

information on Message Codes.

Size is one digit

1

After the SOAP headers, the ASCII file will contain all the records returned in the pull call. The

format will be the same as described in the post, where there is an element name followed by a

colon (:) followed by the value being returned. A complete file specification containing all data

elements is not provided as the returned file is dynamic, based upon the business rules and

request indicator values. SIDES participants should rely on the standard format to ensure all

response values are ingested by the back-end system. The following is an example Response file.

#SOAP Headers

To:ST

From:BR999999999

StateSOAPTransactionNumber:9217

MessageCode:1

#Earnings Verification Response

StateEarningsVerificationRequestRecordGUID:AAA51000000000000000000000000001

BrokerRecordTransactionNumber:5445

RequestingStateAbbreviation:ST

UIOfficeName:Office Name

StateEmployerAccountNbr:1234567890

FEIN:123456789

CorrectedFEIN:987654321

EmployerName:ACME

CorrectedEmployerName:Fly By Night

SSN:211111111

ClaimantNameWorkedAsForEmployer:John Q Public

NumberofWeeksRequested:5

EarningsVerificationWeekBeginDate:2010-08-01

EarningsVerificationWeekEndDate:2010-09-04

ClaimantEmployerWorkRelationshipCode:John Q Public

EmployerEarningsCode:1

FirstDayWorkedinPeriod:2010-08-01

StillWorkingCode:2

LastDayWorked:2010-09-04

EmployerSepReasonCode:1

 109

EarningsVerificationResponseComment:This employee was let go during the time

period

#Weekly Earnings Verification occurence

WeekBeginDate:2010-08-01

WeekEndDate:2010-08-07

HoursWorked:15:00

AmountEarnedForWeek:500.00

#Weekly Earnings Verification occurence

WeekBeginDate:2010-08-08

WeekEndDate:2010-08-14

HoursWorked:15:00

AmountEarnedForWeek:500.00

#Weekly Earnings Verification occurence

WeekBeginDate:2010-08-15

WeekEndDate:2010-08-21

HoursWorked:15:00

AmountEarnedForWeek:500.00

#Weekly Earnings Verification occurence

WeekBeginDate:2010-08-22

WeekEndDate:2010-08-28

HoursWorked:101:00

AmountEarnedForWeek:500.00

#Weekly Earnings Verification occurence

WeekBeginDate:2010-08-29

WeekEndDate:2010-09-04

HoursWorked:5:00

AmountEarnedForWeek:500.00

PreparerTypeCode:T

PreparerCompanyName:ABC TPA

PreparerTelephoneNumberPlusExt:5555555556

PreparerContactName:Mrs Sue Herman

PreparerTitle:Claims Administrator

PreparerFaxNbr:5555555557

PreparerEmailAddress:sue.herman@abctpa.com

EarningsVerificationSourceCode:9

BrokerRecordEffectiveDate:2011-04-08T15:51:50-0400

#Earnings Verification Response

StateEarningsVerificationRequestRecordGUID:AAA52000000000000000000000000002

BrokerRecordTransactionNumber:5446

RequestingStateAbbreviation:ST

UIOfficeName:Office Name

StateEmployerAccountNbr:1234567890

FEIN:123456789

CorrectedFEIN:987654321

EmployerName:ACME

CorrectedEmployerName:Fly By Night

SSN:211121314

ClaimantNameWorkedAsForEmployer:John Q Public

NumberofWeeksRequested:5

 110

EarningsVerificationWeekBeginDate:2010-08-01

EarningsVerificationWeekEndDate:2010-09-04

ClaimantEmployerWorkRelationshipCode:John Q Public

EmployerEarningsCode:1

FirstDayWorkedinPeriod:2010-08-01

StillWorkingCode:2

LastDayWorked:2010-09-04

EmployerSepReasonCode:1

EarningsVerificationResponseComment:This employee was let go during the time

period

#Weekly Earnings Verification occurence

WeekBeginDate:2010-08-01

WeekEndDate:2010-08-07

HoursWorked:15:00

AmountEarnedForWeek:500.00

VacationAmountPaidForWeek:40.00

HolidayAmountPaidForWeek:60.00

HolidayPaidDate:2010-08-07

WagesInLieuAmountPaidForWeek:80.00

WagesInLieuPaidDate:2010-08-07

#Weekly Earnings Verification occurence

WeekBeginDate:2010-08-08

WeekEndDate:2010-08-14

HoursWorked:15:00

AmountEarnedForWeek:500.00

VacationAmountPaidForWeek:40.00

HolidayAmountPaidForWeek:60.00

HolidayPaidDate:2010-08-14

WagesInLieuAmountPaidForWeek:80.00

WagesInLieuPaidDate:2010-08-14

#Weekly Earnings Verification occurence

WeekBeginDate:2010-08-15

WeekEndDate:2010-08-21

HoursWorked:15:00

AmountEarnedForWeek:500.00

VacationAmountPaidForWeek:40.00

HolidayAmountPaidForWeek:60.00

HolidayPaidDate:2010-08-21

WagesInLieuAmountPaidForWeek:80.00

WagesInLieuPaidDate:2010-08-21

#Weekly Earnings Verification occurence

WeekBeginDate:2010-08-22

WeekEndDate:2010-08-28

HoursWorked:101:00

AmountEarnedForWeek:500.00

VacationAmountPaidForWeek:40.00

HolidayAmountPaidForWeek:60.00

HolidayPaidDate:2010-08-28

WagesInLieuAmountPaidForWeek:80.00

WagesInLieuPaidDate:2010-08-28

 111

#Weekly Earnings Verification occurence

WeekBeginDate:2010-08-29

WeekEndDate:2010-09-04

HoursWorked:5:00

AmountEarnedForWeek:500.00

VacationAmountPaidForWeek:40.00

HolidayAmountPaidForWeek:60.00

HolidayPaidDate:2010-09-04

WagesInLieuAmountPaidForWeek:80.00

WagesInLieuPaidDate:2010-09-04

PreparerTypeCode:T

PreparerCompanyName:ABC TPA

PreparerTelephoneNumberPlusExt:5555555556

PreparerContactName:Mrs Sue Herman

PreparerTitle:Claims Administrator

PreparerFaxNbr:5555555557

PreparerEmailAddress:sue.herman@abctpa.com

EarningsVerificationSourceCode:9

BrokerRecordEffectiveDate:2011-04-08T15:51:52-0400

7.2.1.2 Log Files – POST

7.2.1.2.1 DEBUG log file

This log file is the main debugging log file for the whole application for a given run. It contains

all debug output logged in the system during that run. If the system were to fail unexpectedly,

this log file will contain the most up to date status and will most likely indicate where the system

failed. It also includes all the data that is written to the other log files.

The log file is placed into the directory specified by the DebugLogFilePath configuration

parameter. The naming scheme is as follows:

POST_{SI|EV}_DEBUG_date_time.log

For example:

POST_EV_DEBUG_2011-04-08_15-23-18-292.log

7.2.1.2.2 BRPT log file

This log file shows the results from the call to the BRPT on the request files submitted for a

given run. It will indicate all the records that had a problem in them and were thus stripped for

the request file being sent. It is the responsibility of the State to correct these errors and

retransmit these requests to the Central Broker.

Here is an example of the contents of a BRPT log file:

#Failed Records

Record GUID Failure:30000000000000000000000000004001

 112

Number of errors detected:2

#Errors

Error Number:1

Error Code:111

Error Message:Business Rule violation - There must be a value (Date) for

WagesNeededBeginDate if WagesWeeksNeededCode = WO|WW

Error Number:2

Error Code:102

Error Message:Business Rule violation - Two or more UniqueAttachmentIDs

assigned to a specific Separation Information Request are the same - they

must be unique.

The log file is placed into the directory specified by the BrptLogFilePath configuration

parameter. The naming scheme is as follows:

POST_{SI|EV}_BRPT_{to}_{from}_date_time_guid.log

For example:

POST_EV_BRPT_BR999999999_ST_2011-04-08_15-23-18-

292_01234567890123456789012345678901.log

7.2.1.2.3 RESULTS log file

This log file shows the acknowledgement from the Central Broker for a given run.

Here is an example of the contents of a RESULTS log file.

#SOAP Headers in Acknowledgement

To:ST

StateRequestFileGUID:01234567890123456789012345678901

From:Broker

MessageCode:1

#Acknowledgement

File GUID:01234567890123456789012345678901

Number of Request Records Received:1

Number of Request Records Received in Error:0

Date Started Received:2011-04-09T10:07:03.257-04:00

Date Finished Receiving:2011-04-09T10:07:03.601-04:00

The log file is placed into the directory specified by the ResultsLogFilePath configuration

parameter. The naming scheme is as follows:

POST_{SI|EV}_RESULTS_{to}_{from}_date_time_guid.log

For example:

POST_SI_RESULTS_BR999999999_ST_2011-04-08_15-23-18-

292_01234567890123456789012345678901.log

 113

7.2.1.2.4 PIN log file

This log file shows the created PIN that was used in the call to the SEW. The PIN log file will

only exist if a pin was created. If the config file had the createPin config parameter set to false

or there was a problem with the SOAP headers (i.e. the To: header specified was not a 9 digit

FEIN) the PIN log file will not be created. If you expect to see a PIN log file but one was not

created, view the debug file for that run which will give more detailed information.

Here is an example of the contents of a PIN log file.

PIN:20110409120056488

The log file is placed into the directory specified by the PINLogFilePath configuration

parameter. The naming scheme is as follows:

POST_{SI|EV}_PIN_{to}_{from}_date_time_guid.log

For example:

POST_SI_PIN_BR999999999_ST_2011-04-08_15-23-18-

292_01234567890123456789012345678901.log

7.2.1.3 Log Files – PULL

7.2.1.3.1 DEBUG log file

This is the main debugging log file for the whole application for a given run. It contains all

debug output logged in the system during that run. If the system were to fail unexpectedly, this

log file will contain the most up to date status and will most likely indicate where the system

failed. It also includes all the data written to the other log files.

The log file is placed into the directory specified by the DebugLogFilePath configuration

parameter. The naming scheme is as follows:

PULL_{SI|EV}_DEBUG_date_time.log

For example:

PULL_EV_DEBUG_2011-04-08_15-46-12-035.log

7.2.1.3.2 BRPT log file

This log file shows the results from the call to the BRPT on the response files returned by the

Central Broker for a given run. If there are any records in this file, then the State Model

 114

Connector will return a Message Code of 2 back to the Central Broker indicating a failure.

This file will then be pulled again on its next Pull call.

Here is an example of the contents of a BRPT log file:

#Failed Records

Record GUID Failure:30000000000000000000000000004000

Number of errors detected: 1

#Errors

Error Number:1

Error Code:201

Error Message:XSD validation violation

The log file is placed into the directory specified by the BrptLogFilePath configuration

parameter. The naming scheme is as follows:

PULL_{SI|EV}_BRPT_{to}_{from}_date_time_PullCollection.log

For example:

PULL_EV_BRPT_Broker_ST_2011-04-08_15-46-12-035_1.log

7.2.1.3.3 RESULTS log file

This log file shows the results of the Pull call from the Central Broker for a given run. It will

contain the State Separation Responses in XML format. If the pullAllFiles config file parameter

is set to true, then this file will contain all of the SOAP Headers and Response Payloads the

Model Connector received from the Central Broker.

Here is an example of the contents of a RESULTS log file.

#SOAP Headers

To:ST

From:BR999999999

StateSOAPTransactionNumber:143104

MessageCode:1

#Response Payload

<StateSeparationResponseCollection xmlns:ns2="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

xmlns="https:// REDACTED /schemas">

 <StateSeparationResponse>

<StateRequestRecordGUID>30000000000000000000000000004004</StateRequestR

ecordGUID>

<BrokerRecordTransactionNumber>2013890</BrokerRecordTransactionNumber>

 <SSN>560348478</SSN>

 <ClaimEffectiveDate>2007-06-04</ClaimEffectiveDate>

 <ClaimNumber>388620</ClaimNumber>

 115

 <StateEmployerAccountNbr>0065560</StateEmployerAccountNbr>

 <EmployerReportedClaimantFirstDayofWork>2007-10-

11</EmployerReportedClaimantFirstDayofWork>

 <EmployerReportedClaimantLastDayofWork>2007-10-

14</EmployerReportedClaimantLastDayofWork>

 <EffectiveSeparationDate>2007-10-14</EffectiveSeparationDate>

 <TotalEarnedWagesNeededInd>3</TotalEarnedWagesNeededInd>

 <TotalWeeksWorkedNeededInd>3</TotalWeeksWorkedNeededInd>

 <AverageWeeklyWage>125.00</AverageWeeklyWage>

 <EmployerSepReasonCode>4</EmployerSepReasonCode>

 <ReturnToWorkInd>Y</ReturnToWorkInd>

 <ReturnToWorkDate>2010-01-01</ReturnToWorkDate>

 <WorkingAllAvailableHoursInd>Y</WorkingAllAvailableHoursInd>

 <Remuneration>

 <RemunerationTypeCode>4</RemunerationTypeCode>

 <RemunerationAmountPerPeriod>999.99</RemunerationAmountPerPeriod>

<RemunerationPeriodFrequencyCode>M</RemunerationPeriodFrequencyCode>

 <DateRemunerationIssued>2007-10-15</DateRemunerationIssued>

 <EmployerAllocationInd>Y</EmployerAllocationInd>

 <AllocationBeginDate>2007-10-15</AllocationBeginDate>

 <AllocationEndDate>2007-10-22</AllocationEndDate>

 </Remuneration>

<AverageNumberofHoursWorkedperWeek>40</AverageNumberofHoursWorkedperWeek>

 <MandatoryRetirementInd>N</MandatoryRetirementInd>

 <MandatoryPension>N</MandatoryPension>

<ContributoryorNotContributoryClaimantInd>Y</ContributoryorNotContributoryCla

imantInd>

<ClaimantPensionContributionPercent>100</ClaimantPensionContributionPercent>

<EmployerSepReasonComments>EmployerSepReasonComments</EmployerSepReasonCommen

ts>

 <DischargeReasonCode>4</DischargeReasonCode>

 <FinalIncidentReason>FinalIncidentReason</FinalIncidentReason>

 <FinalIncidentDate>2007-10-13</FinalIncidentDate>

 <ViolateCompanyPolicyInd>Y</ViolateCompanyPolicyInd>

 <DischargePolicyAwareInd>Y</DischargePolicyAwareInd>

<DischargePolicyAwareExplanationCode>W</DischargePolicyAwareExplanationCode>

 <PriorIncidentOccurrence>

 <PriorIncidentDate>2007-10-10</PriorIncidentDate>

 <PriorIncidentReason>None</PriorIncidentReason>

 <PriorIncidentWarningInd>Y</PriorIncidentWarningInd>

 <PriorIncidentWarningDate>2007-10-10</PriorIncidentWarningDate>

<PriorIncidentWarningDescription>Verbal</PriorIncidentWarningDescription>

 </PriorIncidentOccurrence>

 <WhoDischargedName>Brian Wilson</WhoDischargedName>

 <WhoDischargedTitle>Customer Service Associate</WhoDischargedTitle>

 <VoluntarySepReasonCode>4</VoluntarySepReasonCode>

 <HiringAgreementChangesCode>4</HiringAgreementChangesCode>

 116

<HiringAgreementChangesComments>HiringAgreementChangesComments</HiringAgreeme

ntChangesComments>

 <ClaimantActionsToAvoidQuitInd>Y</ClaimantActionsToAvoidQuitInd>

 <ActionTakenComments>ActionTakenComments</ActionTakenComments>

 <ContinuingWorkAvailableInd>Y</ContinuingWorkAvailableInd>

 <PreparerTypeCode>E</PreparerTypeCode>

 <PreparerCompanyName>J C Penny</PreparerCompanyName>

<PreparerTelephoneNumberPlusExt>9724312108</PreparerTelephoneNumberPlusExt>

 <PreparerContactName>Ed A Jones</PreparerContactName>

 <PreparerTitle>Project Manager</PreparerTitle>

 <PreparerFaxNbr>9725312108</PreparerFaxNbr>

 <PreparerEmailAddress>edjones@jcpenneytest.com</PreparerEmailAddress>

 <BrokerRecordEffectiveDate>2011-04-09T12:24:47.000-

04:00</BrokerRecordEffectiveDate>

 </StateSeparationResponse>

 <StateSeparationResponse>

<StateRequestRecordGUID>30000000000000000000000000004003</StateRequestRecordG

UID>

<BrokerRecordTransactionNumber>2013889</BrokerRecordTransactionNumber>

 <SSN>560348477</SSN>

 <ClaimEffectiveDate>2007-06-04</ClaimEffectiveDate>

 <ClaimNumber>388620</ClaimNumber>

 <StateEmployerAccountNbr>0065560</StateEmployerAccountNbr>

 <CorrectedEmployerName>J C Penny</CorrectedEmployerName>

<CorrectedStateEmployerAccountNbr>0123456789</CorrectedStateEmployerAccountNb

r>

 <CorrectedFEIN>987654321</CorrectedFEIN>

 <OtherSSN>660348477</OtherSSN>

 <ClaimantNameWorkedAsForEmployer>Andy

Wilson</ClaimantNameWorkedAsForEmployer>

 <ClaimantJobTitle>Customer Service Associate</ClaimantJobTitle>

 <SeasonalEmploymentInd>N</SeasonalEmploymentInd>

 <EmployerReportedClaimantFirstDayofWork>2007-10-

11</EmployerReportedClaimantFirstDayofWork>

 <EmployerReportedClaimantLastDayofWork>2007-10-

14</EmployerReportedClaimantLastDayofWork>

 <EffectiveSeparationDate>2007-10-14</EffectiveSeparationDate>

 <TotalEarnedWagesNeededInd>3</TotalEarnedWagesNeededInd>

 <TotalWeeksWorkedNeededInd>3</TotalWeeksWorkedNeededInd>

 <AverageWeeklyWage>125.00</AverageWeeklyWage>

 <EmployerSepReasonCode>3</EmployerSepReasonCode>

 <ReturnToWorkInd>N</ReturnToWorkInd>

 <WorkingAllAvailableHoursInd>N</WorkingAllAvailableHoursInd>

<NotWorkingAvailableHoursReason>NotWorkingAvailableHoursReason</NotWorkingAva

ilableHoursReason>

 <LaborDisputeTypeInd>L</LaborDisputeTypeInd>

 <Remuneration>

 <RemunerationTypeCode>3</RemunerationTypeCode>

 <RemunerationAmountPerPeriod>999.99</RemunerationAmountPerPeriod>

 117

<RemunerationPeriodFrequencyCode>B</RemunerationPeriodFrequencyCode>

 <DateRemunerationIssued>2007-10-15</DateRemunerationIssued>

 <EmployerAllocationInd>N</EmployerAllocationInd>

 <AllocationBeginDate>2007-10-15</AllocationBeginDate>

 <AllocationEndDate>2007-10-22</AllocationEndDate>

 </Remuneration>

<AverageNumberofHoursWorkedperWeek>40</AverageNumberofHoursWorkedperWeek>

 <MandatoryRetirementInd>N</MandatoryRetirementInd>

 <MandatoryPension>N</MandatoryPension>

<ContributoryorNotContributoryClaimantInd>N</ContributoryorNotContributoryCla

imantInd>

<ClaimantPensionContributionPercent>100</ClaimantPensionContributionPercent>

 <DischargeReasonCode>3</DischargeReasonCode>

 <FinalIncidentReason>FinalIncidentReason</FinalIncidentReason>

 <FinalIncidentDate>2007-10-13</FinalIncidentDate>

 <ViolateCompanyPolicyInd>N</ViolateCompanyPolicyInd>

 <DischargePolicyAwareInd>N</DischargePolicyAwareInd>

<DischargePolicyAwareExplanationCode>V</DischargePolicyAwareExplanationCode>

 <PriorIncidentOccurrence>

 <PriorIncidentDate>2007-10-10</PriorIncidentDate>

 <PriorIncidentReason>None</PriorIncidentReason>

 <PriorIncidentWarningInd>Y</PriorIncidentWarningInd>

 <PriorIncidentWarningDate>2007-10-10</PriorIncidentWarningDate>

<PriorIncidentWarningDescription>Verbal</PriorIncidentWarningDescription>

 </PriorIncidentOccurrence>

 <WhoDischargedName>Andy Wilson</WhoDischargedName>

 <WhoDischargedTitle>Customer Service Associate</WhoDischargedTitle>

 <VoluntarySepReasonCode>3</VoluntarySepReasonCode>

 <HiringAgreementChangesCode>3</HiringAgreementChangesCode>

<HiringAgreementChangesComments>HiringAgreementChangesComments</HiringAgreeme

ntChangesComments>

 <ClaimantActionsToAvoidQuitInd>N</ClaimantActionsToAvoidQuitInd>

 <ContinuingWorkAvailableInd>N</ContinuingWorkAvailableInd>

 <PreparerTypeCode>T</PreparerTypeCode>

 <PreparerCompanyName>J C Penny</PreparerCompanyName>

<PreparerTelephoneNumberPlusExt>9724312108</PreparerTelephoneNumberPlusExt>

 <PreparerContactName>Ed A Jones</PreparerContactName>

 <PreparerTitle>Project Manager</PreparerTitle>

 <PreparerFaxNbr>9725312108</PreparerFaxNbr>

 <PreparerEmailAddress>edjones@jcpenneytest.com</PreparerEmailAddress>

 <BrokerRecordEffectiveDate>2011-04-09T12:24:44.000-

04:00</BrokerRecordEffectiveDate>

 </StateSeparationResponse>

 <StateSeparationResponse>

<StateRequestRecordGUID>30000000000000000000000000004005</StateRequestRecordG

UID>

 118

<BrokerRecordTransactionNumber>2013891</BrokerRecordTransactionNumber>

 <SSN>560348479</SSN>

 <ClaimEffectiveDate>2007-06-04</ClaimEffectiveDate>

 <ClaimNumber>378621</ClaimNumber>

 <StateEmployerAccountNbr>0065560</StateEmployerAccountNbr>

 <CorrectedEmployerName>J C Penny</CorrectedEmployerName>

<CorrectedStateEmployerAccountNbr>0123456789</CorrectedStateEmployerAccountNb

r>

 <CorrectedFEIN>987654321</CorrectedFEIN>

 <OtherSSN>660348479</OtherSSN>

 <ClaimantNameWorkedAsForEmployer>Charlie

Wilson</ClaimantNameWorkedAsForEmployer>

 <ClaimantJobTitle>Customer Service Associate</ClaimantJobTitle>

 <SeasonalEmploymentInd>Y</SeasonalEmploymentInd>

 <TotalEarnedWagesNeededInd>2</TotalEarnedWagesNeededInd>

 <TotalWeeksWorkedNeededInd>2</TotalWeeksWorkedNeededInd>

 <AverageWeeklyWage>125.00</AverageWeeklyWage>

 <EmployerSepReasonCode>5</EmployerSepReasonCode>

 <ReturnToWorkInd>N</ReturnToWorkInd>

 <ReturnToWorkDate>2010-01-01</ReturnToWorkDate>

 <WorkingAllAvailableHoursInd>Y</WorkingAllAvailableHoursInd>

 <Remuneration>

 <RemunerationTypeCode>5</RemunerationTypeCode>

 <RemunerationAmountPerPeriod>999.99</RemunerationAmountPerPeriod>

<RemunerationPeriodFrequencyCode>W</RemunerationPeriodFrequencyCode>

 <DateRemunerationIssued>2007-10-15</DateRemunerationIssued>

 <EmployerAllocationInd>Y</EmployerAllocationInd>

 <AllocationBeginDate>2007-10-15</AllocationBeginDate>

 <AllocationEndDate>2007-10-22</AllocationEndDate>

 </Remuneration>

<AverageNumberofHoursWorkedperWeek>40</AverageNumberofHoursWorkedperWeek>

 <MandatoryPension>N</MandatoryPension>

<ContributoryorNotContributoryClaimantInd>Y</ContributoryorNotContributoryCla

imantInd>

<ClaimantPensionContributionPercent>100</ClaimantPensionContributionPercent>

<EmployerSepReasonComments>EmployerSepReasonComments</EmployerSepReasonCommen

ts>

 <DischargeReasonCode>5</DischargeReasonCode>

 <FinalIncidentReason>FinalIncidentReason</FinalIncidentReason>

 <FinalIncidentDate>2007-10-22</FinalIncidentDate>

 <ViolateCompanyPolicyInd>N</ViolateCompanyPolicyInd>

<DischargePolicyAwareExplanationCode>W</DischargePolicyAwareExplanationCode>

 <WhoDischargedName>Charlie Wilson</WhoDischargedName>

 <WhoDischargedTitle>Customer Service Associate</WhoDischargedTitle>

 <VoluntarySepReasonCode>5</VoluntarySepReasonCode>

 <HiringAgreementChangesCode>5</HiringAgreementChangesCode>

 119

<HiringAgreementChangesComments>HiringAgreementChangesComments</HiringAgreeme

ntChangesComments>

 <ClaimantActionsToAvoidQuitInd>Y</ClaimantActionsToAvoidQuitInd>

 <ActionTakenComments>ActionTakenComments</ActionTakenComments>

 <ContinuingWorkAvailableInd>Y</ContinuingWorkAvailableInd>

 <VoluntarySepReasonComments>The claimant quit without giving JCPenney

a reason.</VoluntarySepReasonComments>

 <PreparerTypeCode>E</PreparerTypeCode>

 <PreparerCompanyName>J C Penny</PreparerCompanyName>

<PreparerTelephoneNumberPlusExt>9724312108</PreparerTelephoneNumberPlusExt>

 <PreparerContactName>Ed A Jones</PreparerContactName>

 <PreparerTitle>Project Manager</PreparerTitle>

 <PreparerFaxNbr>9725312108</PreparerFaxNbr>

 <PreparerEmailAddress>edjones@jcpenneytest.com</PreparerEmailAddress>

 <BrokerRecordEffectiveDate>2011-04-09T12:24:55.000-

04:00</BrokerRecordEffectiveDate>

 </StateSeparationResponse>

</StateSeparationResponseCollection>

#SOAP Headers

To:ST

From:Broker

StateSOAPTransactionNumber:143105

MessageCode:2

#Response Payload

<StateSeparationResponseCollection xmlns:ns2="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

xmlns="https:// REDACTED /schemas"/>

The log file is placed into the directory specified by the ResultsLogFilePath configuration

parameter. The naming scheme is as follows:

PULL_{SI|EV}_RESULTS_{to}_{from}_date_time_PullCollection.log

For example:

PULL_SI_RESULTS_Broker_ST_2011-04-08_15-46-12-035_1.log

7.2.1.4 Setup Employer Model Connector

To begin using the Employer Model Connector, the employer or TPA must first download the

software from the sides.itsc.org website.

There are two options for download of the Employer Model Connector.

The first option is the ‘Black Box’ approach. This download contains only the executable file(s)

and any support files and/or directories required to run the employer Model Connector. The data

 120

directory contains some test files used to construct the Model Connector. The readme.txt file

indicates how to execute the application, which is discussed below.

Option 2 is the full Employer Model Connector project. This download contains a directory that

has the executable files and the source files. The Employer Model Connector project contains all

files required to be loaded into the Eclipse IDE or Visual Studio 2010 with minimal adjustments

required.

To learn more about the setup and running of the particular technology, please see the section

below that corresponds to the technology desired.

7.2.1.4.1 Employer Requirements for ASCII file

All of the employer/TPA requirements detailed in Part B of this document are still applicable for

the ASCII file. In particular, when creating the ASCII file, you must make sure that it falls under

the 8 megabyte limit or it will be rejected by the Central Broker. Attachments are handled the

same way within the ASCII file as they are within the XML; the software expects attachments to

be encoded into the ASCII file. The one minor difference between the XML and ASCII file is

that when placing an encoded file into the ASCII file it must be a continuous string with no

newline characters in it (must not be chunked). If the ASCII file contains newlines characters in

the encoded attachment, the data file reader will not work correctly.

7.2.1.4.2 Response Input

Input files are specified on the command line used to execute the Model Connector. See

examples below.

7.2.1.4.3 Request Output

The SIDES Model Connector can provide requests in ASCII format, PDF, or both ASCII and

PDF. In all cases, the requests are available in XML format. ASCII and PDF output files are

specified in the runtime configuration parameters. The XML request output file is contained in

the results Log file, whose path is specified in the runtime configuration parameters.

7.2.1.4.4 ASCII File Specification – Separation Information Post

The ASCII file ingested by the Model Connector on the Post has two main sections. Section 1

(SOAP Headers) describes the SOAP Headers that must be placed on the SOAP message. The

second section (Response) describes the actual response records. These are discussed further

below. Any line in the ASCII specification that is empty or contains a # character as the first

character is ignored. The # allows comments to be placed in the file.

 121

Soap

Headers

Response

#1

 122

The SOAP headers section of the ASCII file contains the routing information discussed in

section 4.3-SOAP Custom Headers. It must contain the following information:

Table 38 - Employer Post to Broker

Header Element Required Definition Example

To Y The Unique ID of the State to which the

message is intended

UT

From Y The Unique ID of the employer/TPA

where the message originated

BR000000003

FileGUID Y The employer-generated GUID applied

to this message that can uniquely identify

A42A1FBDAC9549

AC7D8D3F45E404

End of

Response

#1

 123

Header Element Required Definition Example

this file

Size is 32 hexadecimal digits

0319

The Response section of the ASCII file contains the actual response record or records. There can

be multiple responses records in a file. Each request record must start with the element name

StateRequestRecordGUID. Within the record itself, there can also be repeatable attachment

sections (up to 10 attachments according to the Separation Information specification), Prior

Incidents or Remunerations. The repeatable section must contain all of the information on a

particular section before moving on to the next repeatable element. Each line in the record

contains the Data Element Name as described in the Implementation Guide followed by a colon

(:) followed by the value given to that element name. The value must be contained all on a

single line. If the data element value is null, it must not be in the ASCII file.

7.2.1.4.5 ASCII File Specification – Separation Information PULL

The ASCII file ingested by the Model Connector on the Pull has two main sections. Section 1

describes the SOAP Headers, which must be placed on the SOAP message. Section 2 describes

the Pull Collection Query. These are discussed below. Any line that is empty or has a #

character as the first character in it is ignored. The # allows comments to be placed in the file.

There are three PULL formats that will accomplish the same thing as their XML counterparts

described in section 4.3.2-State Pull.

 Regular Pull

 Pull By EmployerTPA Soap Transaction Number

 124

 Pull By Date

If specified in the configuration file, the Employer Model Connector will return the requests in

an ASCII format. The top of the file will contain the SOAP Headers in the response file.

Table 39 - Broker Response to Request (Regular Pull)

Header Element Definition Example

To The Unique ID of the employer/TPA that

requested the Pull

BR000000003

From The Unique ID of the state from which these

request records originated

UT

EmployerTPASOAPTrans

actionNumber

The unique number assigned to this file by the

Broker

3565

MessageCode The acknowledgement code applied to the 1

 125

Header Element Definition Example

message that indicates success or failure of the

entire transmission. See 4.2.5 for further

information on Message Codes.

Size is one digit

After the SOAP headers, the ASCII file will contain all the records returned in the pull call. The

format will be the same as described in the post, where there is an element name followed by a

colon (:) followed by the value being returned. A complete file specification containing all data

elements is not provided as the returned file is dynamic, based upon the business rules. SIDES

participants should rely on the standard format to ensure all response values are ingested by the

back-end system. The following is an example Request file.

#Separation Request

StateRequestRecordGUID:ccc5915556584c3fad5ef6d21de9eb23

SSN:000195788

ClaimEffectiveDate:2010-07-11

StateEmployerAccountNbr:129054

EmployerName:H E BUTT GROCERY COMPANY

FEIN:740537175

TypeofEmployerCode:2

TypeofClaimCode:1

BenefitYearBeginDate:2010-07-11

RequestingStateAbbreviation:TX

UIOfficeName:TEXAS WORKFORCE COMMISSIO

UIOfficePhone:8888766107

UIOfficeFax:5123222815

ClaimantLastName:HUGHES

ClaimantFirstName:BRIAN

ClaimantMiddleInitial:K

ClaimantJobTitle:AVIATION FULLER

ClaimantReportedFirstDayofWork:2008-10-13

ClaimantReportedLastDayofWork:2010-06-29

WagesWeeksNeededCode:NA

ClaimantSepReasonCode:6

RequestDate:2010-08-18

ResponseDueDate:2010-09-01

FormNumber:610.0

BrokerRecordTransactionNumber:2041311

BrokerRecordEffectiveDate:2011-04-14T10:40:42-0400

#Separation Request

StateRequestRecordGUID:c755d30ed7dd4662bc0452e9050c00df

SSN:000989494

ClaimEffectiveDate:2008-09-28

ClaimNumber:0

StateEmployerAccountNbr:342424001

EmployerName:ELDORA ENTERPRISES LTD LIABILITY CO

 126

FEIN:841173055

TypeofEmployerCode:1

TypeofClaimCode:1

BenefitYearBeginDate:2008-09-28

RequestingStateAbbreviation:CO

UIOfficeName:CO CDLE

UIOfficePhone:3033189055

UIOfficeFax:3033189014

ClaimantLastName:WHEELOCK

ClaimantFirstName:PHILIPPE

ClaimantMiddleInitial:M

ClaimantJobTitle:SKI PATROL

ClaimantReportedFirstDayofWork:2005-11-25

ClaimantReportedLastDayofWork:2008-04-10

WagesWeeksNeededCode:NA

ClaimantSepReasonCode:1

#Attachment occurence

UniqueAttachmentId:1

DescriptionofAttachmentCode:3

TypeofDocument:NOTICE AND REQUEST FOR SEPARATION INFO

ActionableAttachment:3

AttachmentSize:53104

AttachmentData:e1xydGYxXGFkZWZsYW5nMTAyNVxhbnNpXGFuc2ljcGcxMjUyXHVjMVxhZGVmZj

BcZGVmZjBccQ==

RequestDate:2008-09-28

ResponseDueDate:2008-10-13

FormNumber:UIB-290e

BrokerRecordTransactionNumber:2041294

BrokerRecordEffectiveDate:2011-04-13T17:31:52-0400

7.2.1.4.6 ASCII File Specification – Earnings Verification POST

The ASCII file ingested by the Model Connector on the Post has two main sections to it. Section

1 describes the SOAP Headers that must be placed on the SOAP message. Section 2 describes

the actual response record(s). These are discussed below. Any line that is empty or has a #

character as the first character in it is ignored. The # allows comments to be placed in the file.

 127

Soap

Headers

Response

#1

End of

Response

#1

 128

The first part of the ASCII file contains the SOAP headers. This is the routing information

discussed in section 4.3-SOAP Custom Headers. It must contain the following information:

Table 40 - Employer Post to Broker

Header Element Required Definition Example

To Y The Unique ID of the state to which the

message is intended

UT

From Y The Unique ID of the employer/TPA

where the message originated

BR000000003

FileGUID

Y The employer-generated GUID applied

to this message that can uniquely identify

this file

Size is 32 hexadecimal digits

A42A1FBDAC9549

AC7D8D3F45E404

0319

The second part of the ASCII file is the actual response record(s). There can be multiple

response records in a file. Each response record must begin with the element name

EmployerTPAEarningsVerificationRequestRecordGUID. Each line in the record contains the

Data Element Name as described in the Implementation Guide followed by a colon (:) followed

by the value given to that element name. The value must be contained all on a single line. If the

data element value is null, it must not be in the ASCII file.

7.2.1.4.7 ASCII File Specification – Earnings Verification PULL

The ASCII file ingested by the Model Connector on the Pull has two main sections to it. The

first section describes the SOAP Headers that must be placed on the SOAP message. The second

section describes the Pull Collection Query. These are discussed below. Any line that is empty

or has a # character as the first character in it is ignored. The # allows comments to be placed in

the file.

There are three PULL formats that will accomplish the same thing as their XML counterparts

described in section 4.3.2-State Pull.

 Regular Pull

 129

 Pull By EmployerTPA Soap Transaction Number

 Pull By Date

If specified in the configuration file, the Employer Model Connector will return the request in an

ASCII format. The top of the file will contain the SOAP Headers in the response file.

Table 41 - Broker Response to Request (Regular Pull)

Header Element Definition Example

To The Unique ID of the employer/TPA that BR000000001

 130

Header Element Definition Example

requested the Pull

From The Unique ID of the state from which these

request records originated

UT

EmployerTPASOAPTrans

actionNumber

The unique number assigned to this file by the

Broker

3565

MessageCode The acknowledgement code applied to the

message that indicates success or failure of the

entire transmission. See 4.2.5 for further

information on Message Codes.

Size is one digit

1

After the SOAP headers, the ASCII file will contain all the records returned in the pull call. The

format will be the same as described in the post, where there is an element name followed by a

colon (:) followed by the value being returned. A complete file specification containing all data

elements is not provided as the returned file is dynamic, based upon the business rules and

request indicator values. SIDES participants should rely on the standard format to ensure all

response values are ingested by the back-end system. The following is an example Request file.

#Request Payload

#SOAP Headers

To:BR999999999

From:ST

EmployerTPASOAPTransactionNumber:9551

MessageCode:1

#Earnings Verification Request

StateEarningsVerificationRequestRecordGUID:c755d30ed7dd4662bc0452e9050c00cd

RequestingStateAbbreviation:ST

UIOfficeName:UI Office of ST

UIOfficePhone:2105551212

UIOfficeFax:2105551313

UIOfficeEmailAddress:test@nowhere.com

StateEmployerAccountNbr:0123456789

FEIN:999999999

EmployerName:Test Employer

SSN:000989496

ClaimantLastName:Doe

ClaimantFirstName:John

ClaimantMiddleInitial:M

ClaimantSuffix:Jr

 131

NumberofWeeksRequested:5

EarningsVerificationWeekBeginDate:2010-01-03

EarningsVerificationWeekEndDate:2010-02-06

EarningsVerificationComments:Test of Earnings Verification Comments field.

RequestDate:2010-09-07

EarningsStatusCode:3

TipsStatusCode:1

CommissionStatusCode:1

BonusStatusCode:3

VacationStatusCode:2

SickLeaveStatusCode:3

HolidayStatusCode:2

SeveranceStatusCode:2

WagesInLieuStatusCode:2

EarningsVerificationResponseCommentIndicator:1

ResponseDueDate:2012-12-07

EarningsVerificationSourceCode:9

BrokerRecordTransactionNumber:7850

BrokerRecordEffectiveDate:2011-04-22T12:46:49-0400

#SOAP Headers

To:BR999999999

From:Broker

EmployerTPASOAPTransactionNumber:9229

MessageCode:2

7.2.1.5 Log Files – POST

7.2.1.5.1 DEBUG log file

This log file is the main debugging log file for a given run. It contains all debug output logged

in the system during that run. If the system were to fail unexpectedly, the log file will contain

the most up to date status and will most likely indicate where the system failed. It also includes

all the data that is written to the other log files.

The log file is placed into the directory specified by the DebugLogFilePath configuration

parameter. The naming scheme is as follows:

POST_{SI|EV}_DEBUG_date_time.log

For example:

POST_EV_DEBUG_2011-04-08_15-23-18-292.log

7.2.1.5.2 BRPT log file

This log file shows the results from the call to the BRPT on the response files submitted for a

given run. It will indicate all the records that had a problem in them and were thus stripped for

the response file being sent. It is the responsibility of the employer or TPA to correct these

errors and retransmit these responses to the Central Broker.

 132

An example of the contents of a BRPT log file follows below:

#Failed Records

Record GUID Failure:00000000000000000000000060000180

Number of errors detected:1

#Errors

Error Number:1

Error Code:248

Error Message:Business Rule violation - There must be a value (Character -

Size 60) for PreparerCompanyName if PreparerTypeCode = T for Third Party

Administrator

Record GUID Failure:00000000000000000000000060000181

Number of errors detected:1

#Errors

Error Number:1

Error Code:248

Error Message:Business Rule violation - There must be a value (Character -

Size 60) for PreparerCompanyName if PreparerTypeCode = T for Third Party

Administrator

The log file is placed into the directory specified by the BrptLogFilePath configuration

parameter. The naming scheme is as follows:

POST_{SI|EV}_BRPT_{to}_{from}_date_time_guid.log

For example:

POST_EV_BRPT_ST_BR999999999_2011-04-08_15-23-18-

292_01234567890123456789012345678901.log

7.2.1.5.3 RESULTS log file

This log file shows the acknowledgement from the Central Broker for a given run.

An example illustrating the contents of a RESULTS log file follows below:

#SOAP Headers in Acknowledgement

To:BR999999999

EmployerTPAResponseFileGUID:577E92EE2CD5EE8C44B90A5A581B36F4

From:Broker

MessageCode:1

#Acknowledgement

File GUID:577E92EE2CD5EE8C44B90A5A581B36F4

Number of response Records Received:1

Number of response Records Received in Error:0

Date Started Received:2011-04-13T09:38:20.554-04:00

Date Finished Receiving:2011-04-13T09:38:20.870-04:00

The log file is placed into the directory specified by the ResultsLogFilePath configuration

parameter. The naming scheme is as follows:

POST_{SI|EV}_RESULTS_{to}_{from}_date_time_guid.log

 133

For example:

POST_SI_RESULTS_BR999999999_ST_2011-04-08_15-23-18-

292_01234567890123456789012345678901.log

7.2.1.6 Log Files – PULL

7.2.1.6.1 DEBUG log file

This is the main debugging log file for the whole application for a given run. It contains all

debug output logged in the system during the run. If the system were to fail unexpectedly, this

log file will contain the most up to date status and will most likely indicate where the system

failed. It also includes all the data written to the other log files.

The log file is placed into the directory specified by the DebugLogFilePath configuration

parameter. The naming scheme is as follows:

PULL_{SI|EV}_DEBUG_date_time.log

For example:

PULL_EV_DEBUG_2011-04-08_15-46-12-035.log

7.2.1.6.2 BRPT log file

This log file shows the results from the call to the BRPT on the request files returned by the

Central Broker for a given run. If there are any records in this file, then the Employer Model

Connector will return a Message Code of 2 back to the Central Broker indicating a failure.

This file will then be pulled again on its next Pull call.

Here is an example of the contents of a BRPT log file:

#Failed Records

Record GUID Failure:30000000000000000000000000004000

Number of errors detected: 1

#Errors

Error Number:1

Error Code:101

Error Message:XSD validation violation

The log file is placed into the directory specified by the BrptLogFilePath configuration

parameter. The naming scheme is as follows:

PULL_{SI|EV}_BRPT_{to}_{from}_date_time_PullCollection.log

For example:

 134

PULL_EV_BRPT_Broker_BR999999999_2011-04-08_15-46-12-035_1.log

7.2.1.6.3 RESULTS log file

This log file shows the results of the Pull call from the Central Broker for a given run. It will

contain the Employer/TPA Separation Requests in XML format. If the pullAllFiles config file

parameter is set to true, then this file will contain all of the SOAP Headers and Response

Payloads the Model Connector received from the Central Broker.

Here is an example of the contents of a RESULTS log file.

#SOAP Headers

To:BR999999999

From:ST

EmployerTPASOAPTransactionNumber: 143650

MessageCode:1

#Request Payload

<EmployerTPASeparationRequestCollection xmlns:ns2="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

xmlns="https:// REDACTED /schemas">

 <EmployerTPASeparationRequest>

<StateRequestRecordGUID>c755d30ed7dd4662bc0452e9050c00df</StateRequestRecordG

UID>

 <SSN>000989494</SSN>

 <ClaimEffectiveDate>2008-09-28</ClaimEffectiveDate>

 <ClaimNumber>0</ClaimNumber>

 <StateEmployerAccountNbr>342424001</StateEmployerAccountNbr>

 <EmployerName>ELDORA ENTERPRISES LTD LIABILITY CO</EmployerName>

 <FEIN>841173055</FEIN>

 <TypeofEmployerCode>1</TypeofEmployerCode>

 <TypeofClaimCode>1</TypeofClaimCode>

 <BenefitYearBeginDate>2008-09-28</BenefitYearBeginDate>

 <RequestingStateAbbreviation>CO</RequestingStateAbbreviation>

 <UIOfficeName>CO CDLE</UIOfficeName>

 <UIOfficePhone>3033189055</UIOfficePhone>

 <UIOfficeFax>3033189014</UIOfficeFax>

 <ClaimantLastName>WHEELOCK</ClaimantLastName>

 <ClaimantFirstName>PHILIPPE</ClaimantFirstName>

 <ClaimantMiddleInitial>M</ClaimantMiddleInitial>

 <ClaimantJobTitle>SKI PATROL</ClaimantJobTitle>

 <ClaimantReportedFirstDayofWork>2005-11-

25</ClaimantReportedFirstDayofWork>

 <ClaimantReportedLastDayofWork>2008-04-

10</ClaimantReportedLastDayofWork>

 <WagesWeeksNeededCode>NA</WagesWeeksNeededCode>

 <ClaimantSepReasonCode>1</ClaimantSepReasonCode>

 <AttachmentOccurrence>

 <UniqueAttachmentId>1</UniqueAttachmentId>

 <DescriptionofAttachmentCode>2</DescriptionofAttachmentCode>

 135

 <TypeofDocument>NOTICE AND REQUEST FOR SEPARATION

INFO</TypeofDocument>

 <ActionableAttachment>3</ActionableAttachment>

 <AttachmentSize>53104</AttachmentSize>

<AttachmentData>e1xydGYxXGFkZWZsYW5nMTAyNVxhbnNpXGFuc2ljcGcxMjUyXHVjMVxhZGVmZ

jBcZGVmZjBccQ==</AttachmentData>

 </AttachmentOccurrence>

 <RequestDate>2008-09-28</RequestDate>

 <ResponseDueDate>2008-10-13</ResponseDueDate>

 <FormNumber>UIB-290e</FormNumber>

<BrokerRecordTransactionNumber>2041294</BrokerRecordTransactionNumber>

 <BrokerRecordEffectiveDate>2011-04-13T17:31:52.000-

04:00</BrokerRecordEffectiveDate>

 </EmployerTPASeparationRequest>

 <EmployerTPASeparationRequest>

<StateRequestRecordGUID>c755d30ed7dd4662bc0452e9050c00df</StateRequestRecordG

UID>

 <SSN>000989494</SSN>

 <ClaimEffectiveDate>2008-09-28</ClaimEffectiveDate>

 <ClaimNumber>0</ClaimNumber>

 <StateEmployerAccountNbr>342424001</StateEmployerAccountNbr>

 <EmployerName>ELDORA ENTERPRISES LTD LIABILITY CO</EmployerName>

 <FEIN>841173055</FEIN>

 <TypeofEmployerCode>1</TypeofEmployerCode>

 <TypeofClaimCode>1</TypeofClaimCode>

 <BenefitYearBeginDate>2008-09-28</BenefitYearBeginDate>

 <RequestingStateAbbreviation>CO</RequestingStateAbbreviation>

 <UIOfficeName>CO CDLE</UIOfficeName>

 <UIOfficePhone>3033189055</UIOfficePhone>

 <UIOfficeFax>3033189014</UIOfficeFax>

 <ClaimantLastName>WHEELOCK</ClaimantLastName>

 <ClaimantFirstName>PHILIPPE</ClaimantFirstName>

 <ClaimantMiddleInitial>M</ClaimantMiddleInitial>

 <ClaimantJobTitle>SKI PATROL</ClaimantJobTitle>

 <ClaimantReportedFirstDayofWork>2005-11-

25</ClaimantReportedFirstDayofWork>

 <ClaimantReportedLastDayofWork>2008-04-

10</ClaimantReportedLastDayofWork>

 <WagesWeeksNeededCode>NA</WagesWeeksNeededCode>

 <ClaimantSepReasonCode>1</ClaimantSepReasonCode>

 <AttachmentOccurrence>

 <UniqueAttachmentId>1</UniqueAttachmentId>

 <DescriptionofAttachmentCode>3</DescriptionofAttachmentCode>

 <TypeofDocument>NOTICE AND REQUEST FOR SEPARATION

INFO</TypeofDocument>

 <ActionableAttachment>3</ActionableAttachment>

 <AttachmentSize>53104</AttachmentSize>

<AttachmentData>e1xydGYxXGFkZWZsYW5nMTAyNVxhbnNpXGFuc2ljcGcxMjUyXHVjMVxhZGVmZ

jBcZGVmZjBccQ==</AttachmentData>

 </AttachmentOccurrence>

 <RequestDate>2008-09-28</RequestDate>

 <ResponseDueDate>2008-10-13</ResponseDueDate>

 136

 <FormNumber>UIB-290e</FormNumber>

<BrokerRecordTransactionNumber>2041333</BrokerRecordTransactionNumber>

 <BrokerRecordEffectiveDate>2011-04-20T16:39:43.000-

04:00</BrokerRecordEffectiveDate>

 </EmployerTPASeparationRequest>

 <EmployerTPASeparationRequest>

<StateRequestRecordGUID>aee086161ef8499092f9f260154ea243</StateRequestRecordG

UID>

 <SSN>334620158</SSN>

 <ClaimEffectiveDate>2010-07-04</ClaimEffectiveDate>

 <StateEmployerAccountNbr>20941456</StateEmployerAccountNbr>

 <EmployerName>IKON OFFICE SOLUTIONS INC</EmployerName>

 <FEIN>230334400</FEIN>

 <TypeofEmployerCode>5</TypeofEmployerCode>

 <TypeofClaimCode>1</TypeofClaimCode>

 <BenefitYearBeginDate>2010-07-04</BenefitYearBeginDate>

 <RequestingStateAbbreviation>TX</RequestingStateAbbreviation>

 <UIOfficeName>TEXAS WORKFORCE COMMISSIO</UIOfficeName>

 <UIOfficePhone>8886578749</UIOfficePhone>

 <UIOfficeFax>5123222875</UIOfficeFax>

 <ClaimantLastName>ORNEDO</ClaimantLastName>

 <ClaimantFirstName>LINA</ClaimantFirstName>

 <ClaimantMiddleInitial>B</ClaimantMiddleInitial>

 <ClaimantJobTitle>ACCOUNTANT</ClaimantJobTitle>

 <ClaimantReportedFirstDayofWork>2008-08-

17</ClaimantReportedFirstDayofWork>

 <ClaimantReportedLastDayofWork>2010-07-

03</ClaimantReportedLastDayofWork>

 <WagesWeeksNeededCode>NA</WagesWeeksNeededCode>

 <ClaimantSepReasonCode>2</ClaimantSepReasonCode>

 <RequestDate>2010-07-07</RequestDate>

 <ResponseDueDate>2010-07-21</ResponseDueDate>

 <FormNumber>610.0</FormNumber>

<BrokerRecordTransactionNumber>2041315</BrokerRecordTransactionNumber>

 <BrokerRecordEffectiveDate>2011-04-14T10:46:23.000-

04:00</BrokerRecordEffectiveDate>

 </EmployerTPASeparationRequest>

</EmployerTPASeparationRequestCollection>

#SOAP Headers

To:BR999999999

From:Broker

EmployerTPASOAPTransactionNumber:143652

MessageCode:2

#Request Payload

<EmployerTPASeparationRequestCollection xmlns:ns2="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

xmlns="https:// REDACTED /schemas"/>

The log file is placed into the directory specified by the ResultsLogFilePath configuration

parameter. The naming scheme is as follows:

 137

PULL_{SI|EV}_RESULTS_{to}_{from}_date_time_PullCollection.log

For example:

PULL_SI_RESULTS_Broker_ST_2011-04-08_15-46-12-035_1.log

7.2.2 Model Connector – Spring

7.2.2.1 Spring-WS Model Connector

7.2.2.1.1 Model Connector Core Components

This Model Connector was developed using Java and the Spring framework.

Within the Model Connector, the REDACTED support is delegated by Spring-WS to Apache

Wss4j.

The Model Connector also uses JAXB2 library to marshall/unmarshall XML to/from Java beans.

The Model Connector was developed on JDK 1.5 (Java 5), but should also run on JDK 1.4 and

Java 6.

The following main libraries are used:

 Spring-2.5.6 (Core Spring library)

 Spring-ws-1.5.8 (Spring Web Services library)

 Apache Wss4j-1.5.8 (REDACTED provider)

 Stax-api-1.0.1 (Streaming API for XML)

 JAXB2 2.1.7 (JAXB2 marshaller/unmarshaller)

For convenience, this sample includes all necessary Eclipse project config files and can be

imported into an existing Eclipse IDE workspace. Eclipse 3.5 (Galileo) or later is required.

7.2.2.1.2 Sample Folders and Files

Root folder: sides-state-client

 ./build.xml

Ant build file (requires Apache Ant 1.7.1 or later)

o Run "ant build" to compile

o Run "ant run-post" to execute sample State Post ws call

o Run "ant run-pull" to execute sample State Pull/State Pull Acknowledgement ws

calls

 ./run-post.*

Unix/Windows shell scripts to run sample State Post Model Connector

 138

o build sample with "ant build" first

 ./run-pull.*

Unix/Windows shell scripts to run sample State Pull Model Connector

o build sample with "ant build" first

 ./src

Contains:

o Java source code

o The Spring config xml file (state-ws-emulator-config.xml)

o Log4j config file (log4j.properties)

o Sample Java keystore file (test-state.jks) with a sample emulator cert/key pair and

Broker cert for WS-Security

 ./lib

Contains required library jar files. All libraries used are open-source Apache LGPL-style

libraries which can be freely distributed.

 ./schemas –

Contains UI SIDES XML schema files and State WSDL file

 ./data

Contains sample payload xml data files for State Post (StateSIPost.xml) and State Pull

Query (StateSIPullQuery.xml)

 ./bin

Build destination folder for compiled Java class files.

7.2.2.1.3 RunTime Configuration

The Model Connector has runtime configuration parameters that allow the state to setup its

connector. The configuration is specified in the Spring config xml file. The bean that specifies

these parameters is the configParams bean. All Java Application Model Connector classes use

the same Spring configuration file, state-ws-emulator-config.xml.

Table 42 - ConfigParam options

Parameter Name Applies To Definition

debugLogFilePath Post and Pull The fully qualified location of the debug log file; it

contains all the information in all the log files plus

 139

Parameter Name Applies To Definition

detailed information on the state of the Model

Connectors workings.

resultsLogFilePath Post and Pull The fully qualified location of the results log file; it

contains all the information with the results from the

call to the Broker.

brptLogFilePath Post and Pull The fully qualified location of the brpt log file; it

contains all the information with the results from the

BRPT.

pinLogFilePath Post The fully qualified location of the pin log file; it

contains all the information on the new pin created if

the createPin config parameter is set to true

pdfFilePath Pull The fully qualified location of the PDF file and

attachments; it will contain all the response received

in PDF form with all of the attachments decoded and

stored in the same directory

writeResponsesAsPDF Pull A boolean value that is “true” if the responses should

be printed out as the PDF and “false” otherwise.

responseFlatFilePath Pull The fully qualified location of the flat file containing

the Response information; it will contain all the

responses received in flat file format with all of the

attachments still encoded

writeResponsesAsFlatFile Pull A boolean value that is “true” if the responses should

be written in the flat file format and “false”

otherwise.

createPin Post A boolean value that is “true” if the system is

directed to create the PIN for the request and “false”

otherwise.

pullAllFiles Pull A boolean value that is “true” if the connector wants

the system to pull all files until the message code = 2

and “false” if the connector wants to make the call

repeatedly (so as to allow the connector more

control).

7.2.2.1.4 Web Services Configuration

The URL of the SIDES Broker Web services and REDACTED configuration is specified in the

Spring config xml file. All Java Application Model Connector classes use the same Spring

configuration file, state-ws-emulator-config.xml.

These are some important spring config file parameters:

1. parentEmulatorWebServiceTemplate bean's defaultUri property:

o The SIDES Broker Web services URL

2. wsSecurityInterceptorTemplate bean's securementUsername property:

o The state X.509 Certificate/Key pair alias inside test-state.jks

 140

3. wsSecurityInterceptorTemplate bean's securementPassword and

validationCallbackHandler property:

o The State Private Key password inside test-state.jks

4. cryptoFactoryBean bean's keyStoreLocation property:

o The file name of the Java keystore file containing certificates/key for WS-Security

Changing State Certificate/Key pair for use by Model Connectors

The sample Model Connector uses REDACTED which is associated with the test-state endpoint

(Connector Name: State Test; Unique Id: ST) on the test SIDES Central Broker deployment. To

change the REDACTED used by Broker to REDACTED State's WS requests:

1. Import the new REDACTED

o See the article at REDACTED for helpful hints

2. Update REDACTED

3. Send the updated information on the REDACTED to the Broker.

7.2.2.1.5 Execution

This Model Connector contains 4 top-level Java classes with a main() method:

o StatePostClient

o StatePostClientDataFile

o StatePullClient

o StatePullClientDataFile

7.2.2.1.5.1 StatePostClient/StatePullClient

These files implement the State Post and the State Pull/Pull Acknowledgment web service calls

respectively.

The StatePostClient and StatePullClient use JAXB2 library for manipulating XML elements as

Java beans.

The StatePostClient/StatePullClient Model Connectors read message payload content from XML

files in the designated folder, send it to the test SIDES Broker Web services URL, and log the

Central Broker's response to the console.

The State Post Model Connector expects five or seven command line arguments:

Table 43 – Spring State Post Model Connector Command Line Arguments

Model Connector Argument Definition

SI | EV This is the exchange that the file is

 141

Model Connector Argument Definition

destined for:

SI – Separation Information

EV – Earnings Verification

"FROM" SOAP header This is the unique id of the State that is

sending the file.

"TO" SOAP header This is the unique id of the Employer/TPA

that the file is destined for.

"StateRequestFileGUID" SOAP header This is the State Request File GUID.

The payload XML source file The XML file that contains the payload for

the call.

SEIN SOAP header (optional –

StatePostClient only, Separation

Information Only)

SEIN value if sending to SEW

employer/TPA

PIN SOAP header (optional –

StatePostClient only)

PIN value if sending to SEW

employer/TPA

To execute the Model Connector from the command line, type:

o java org.uisides.client.state.StatePostClient SI|EV FROM TO StateRequestFileGUID

Payload_XML_File_Name [SEIN PIN]

Sample Model Connector arguments are:

o java org.uisides.client.state.StatePostClient SI ST BR999999999

12345678901234567890123456789012 data/StateSIPost.xml

where:

o SI is the exchange the file is destined for

o ST is the State Test unique id

o BR999999999 is the unique id for EmployerTest UI SIDES endpoint

o 12345678901234567890123456789012 is a test StateRequestFileGUID.

The State Pull Model Connector expects five or six command line arguments:

Table 44 – Spring State Pull Model Connector Command Line Arguments

Model Connector Argument Definition

SI | EV This is the exchange that the file is

destined for:

SI – Separation Information

EV – Earnings Verification

"FROM" SOAP header This is the unique id of the State that is

sending the file.

"TO" SOAP header This must be “Broker.”

“PullCollection” SOAP header 1 for regular pull, 2 for re-pull by

 142

Model Connector Argument Definition

transmission number, 3 for re-pull by date

range

The payload XML source file The XML file that contains the payload for

the call.

StateSOAPTransactionNumber (optional) The value of the

“StateSOAPTransactionNumber” SOAP

header. Only required if the pullCollection

parameter is 2 (re-pull by transaction

number) or 3 (re-pull by date range)

To execute the Model Connector from the command line, type:

o java org.uisides.client.state.StatePullClient SI|EV FROM Broker PullCollection

Payload_XML_File_Name [StateSOAPTransactionNumber]

Sample Model Connector arguments are:

o java org.uisides.client.state.StatePullClient SI ST Broker 1 data/StateSIPullQuery.xml

where:

o SI is the exchange the file is destined for

o ST is the State Test unique id

o 1 is the pull collection for a regular pull

7.2.2.1.5.2 StatePostClientDataFile/StatePullClientDataFile

These files implement the State Post and the State Pull/Pull Acknowledgment Web service calls

respectively that read ASCII files. See Figure 1 and Figure 2.

The StatePostClientDateFile/StatePullClientDataFile Model Connectors read message payload

content from ASCII flat files in the designated folder, send it to the test SIDES Broker Web

services URL, and log Broker's response to the console.

The State Post Data File Model Connector expects two command line arguments:

Table 45 – Spring State Post Data File Model Connector Command Line Arguments

Model Connector Argument Definition

SI | EV This is the exchange that the file is

destined for:

SI – Separation Information

EV – Earnings Verification

Data File This is the fully qualified path and name of

 143

the data file that contains the flat file

structure of the Request(s).

To execute the Model Connector from the command line, type:

o java org.uisides.client.state.StatePostClientDataFile SI|EV Data_File_Name

Sample Model Connector arguments are:

o java org.uisides.client.state.StatePostClientDataFile SI data/StateSIPost.txt

where:

o SI is the exchange the file is destined for

Example State Request File

#SOAP Header Values

To:BR999999999

From:ST

FileGuid:01234567890123456789012345678901

StateRequestRecordGUID:c755d30ed7dd4662bc0452e9050c00df

SSN:000989494

ClaimEffectiveDate:2008-09-28

ClaimNumber:0

StateEmployerAccountNbr:342424001

EmployerName:ELDORA ENTERPRISES LTD LIABILITY CO

FEIN:841173055

TypeofEmployerCode:1

TypeofClaimCode:1

BenefitYearBeginDate:2008-09-28

RequestingStateAbbreviation:CO

UIOfficeName:CO CDLE

UIOfficePhone:3033189055

UIOfficeFax:3033189014

ClaimantLastName:WHEELOCK

ClaimantFirstName:PHILIPPE

ClaimantMiddleInitial:M

ClaimantJobTitle:SKI PATROL

ClaimantReportedFirstDayofWork:2005-11-25

ClaimantReportedLastDayofWork:2008-04-10

WagesWeeksNeededCode:NA

ClaimantSepReasonCode:1

UniqueAttachmentId:01

DescriptionofAttachmentCode:1

TypeofDocument:test-file.txt

ActionableAttachment:3

AttachmentSize:2000

 144

AttachmentData:QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQU

FBDQpCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCDQp

DQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDDQpERERE

REQNCkVFRUVFRUVFRUVFR

UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUUNCkZGRkZGRkZGRkZGRkZGRk

ZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkYNCkdHR0dHR0dHR0dHR0dHR0dHR0d

HR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0cNCkhISEhISEhISEhISEhISEhISEhISEhISEhI

SEhISEhISEhISEhISEhISEhISEhISEgNCklJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJS

UlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJDQpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSk

pKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSg0KS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0t

LS0tLS0tLS0tLS0tLS0tLSw0KTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExM

TExMTExMTExMTEwNCk1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU0NCk5OT

k5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk4NCk9PT09PT09PT0

9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT08NClBQUFBQUFBQUFBQUFBQUFB

QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQDQpRUVFRUVFRUVFRUVFRUVFRUVFRUVFR

UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRDQpSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSU

lJSUlJSUlJSUlJSUlJSUlJSUlJSUg0KU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1

NTU1NTU1NTU1NTU1NTU1MNClRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFR

UVFRUVFRUVFRUDQpBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB

QUENCkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkINC

kNDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0MNCkRERE

RERA0KRUVFRUVFRUVFRUV

FRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRQ0KRkZGRkZGRkZGRkZGRkZG

RkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRg0KR0dHR0dHR0dHR0dHR0dHR0dHR

0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHRw0KSEhISEhISEhISEhISEhISEhISEhISEhISE

hISEhISEhISEhISEhISEhISEhISEhISA0KSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUl

JSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUkNCkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpK

SkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKDQpLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS

0tLS0tLS0tLS0tLS0tLS0tLDQpMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTE

xMTExMTExMTExMTA0KTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTQ0KTk5

OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTg0KT09PT09PT09P

T09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PTw0KUFBQUFBQUFBQUFBQUFBQU

FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFANClFRUVFRUVFRUVFRUVFRUVFRUVFRUV

FRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVENClJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJ

SUlJSUlJSUlJSUlJSUlJSUlJSUlJSDQpTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NT

U1NTU1NTU1NTU1NTU1NTUw0KVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUV

FRUVFRUVFRUVFQNCg==

UniqueAttachmentId:02

DescriptionofAttachmentCode:1

TypeofDocument:test-file2.txt

ActionableAttachment:3

AttachmentSize:2000

AttachmentData:QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQU

FBDQpCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCDQp

DQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDDQpERERE

REQNCkVFRUVFRUVFRUVFR

UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUUNCkZGRkZGRkZGRkZGRkZGRk

ZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkYNCkdHR0dHR0dHR0dHR0dHR0dHR0d

HR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0cNCkhISEhISEhISEhISEhISEhISEhISEhISEhI

SEhISEhISEhISEhISEhISEhISEhISEgNCklJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJS

UlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJDQpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSk

pKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSg0KS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0t

LS0tLS0tLS0tLS0tLS0tLSw0KTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExM

TExMTExMTExMTEwNCk1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU0NCk5OT

k5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk4NCk9PT09PT09PT0

 145

9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT08NClBQUFBQUFBQUFBQUFBQUFB

QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQDQpRUVFRUVFRUVFRUVFRUVFRUVFRUVFR

UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRDQpSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSU

lJSUlJSUlJSUlJSUlJSUlJSUlJSUg0KU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1

NTU1NTU1NTU1NTU1NTU1MNClRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFR

UVFRUVFRUVFRUDQpBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB

QUENCkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkINC

kNDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0MNCkRERE

RERA0KRUVFRUVFRUVFRUV

FRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRQ0KRkZGRkZGRkZGRkZGRkZG

RkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRg0KR0dHR0dHR0dHR0dHR0dHR0dHR

0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHRw0KSEhISEhISEhISEhISEhISEhISEhISEhISE

hISEhISEhISEhISEhISEhISEhISEhISA0KSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUl

JSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUkNCkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpK

SkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKDQpLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS

0tLS0tLS0tLS0tLS0tLS0tLDQpMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTE

xMTExMTExMTExMTA0KTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTQ0KTk5

OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTg0KT09PT09PT09P

T09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PTw0KUFBQUFBQUFBQUFBQUFBQU

FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFANClFRUVFRUVFRUVFRUVFRUVFRUVFRUV

FRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVENClJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJ

SUlJSUlJSUlJSUlJSUlJSUlJSUlJSDQpTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NT

U1NTU1NTU1NTU1NTU1NTUw0KVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUV

FRUVFRUVFRUVFQNCg==

RequestDate:2008-09-28

ResponseDueDate:2008-10-13

FormNumber:UIB-290e

The State Pull Data File Model Connector expects two command line arguments:

Table 46 – Spring State Pull Model Connector Command Line Arguments

Model Connector Argument Definition

SI | EV This is the exchange that the file is

destined for:

SI – Separation Information

EV – Earnings Verification

Data File This is the fully qualified path and name of

the data file that contains the flat file

structure of the Response Collection

Query.

To execute the Model Connector from the command line, type:

o java org.uisides.client.state.StatePullClientDataFile SI|EV Data_File_Name

Sample Model Connector arguments are:

o java org.uisides.client.state.StatePullClientDataFile SI data/StateSIPullQuery.txt

where:

 146

o SI is the exchange the file is destined for

Example State Pull File

#SOAP Header Values

From:ST

To:Broker

PullCollection:3

StateSOAPTransactionNumber:141690

#pull query values

#mandatory field, same as From value

StatePostalCode:ST

#optional fields based on PullCollection value

StateSOAPTransactionNumber:141690

BrokerRecordEffectiveDateFrom:2010-07-13T00:00:00

BrokerRecordEffectiveDateTo:2010-07-14T00:00:00

7.2.2.2 Employer/TPA Model Connector – Spring WS

This sample Model Connector demonstrates how an Employer/TPA can access the UI SIDES

Broker Web services using Spring-WS Model Connector libraries.

REDACTED support is delegated by Spring-WS to Apache Wss4j.

This Model Connector also uses JAXB2 library to marshall/unmarshall XML to/from Java

beans.

The Model Connector was developed on JDK 1.5 (Java 5), but should also run on jdk 1.4 and

Java 6.

The following main libraries are used:

 Spring-2.5.6 (Core Spring library)

 Spring-ws-1.5.8 (Spring Web Services library)

 Apache Wss4j-1.5.8 (REDACTED provider)

 Stax-api-1.0.1 (Streaming API for XML)

 JAXB2 2.1.7 (JAXB2 marshaller/unmarshaller)

For convenience, this sample includes all necessary Eclipse project config files and can be

imported into an existing Eclipse IDE workspace. Eclipse 3.5 (Galileo) or later is required.

7.2.2.2.1 Sample Folders and Files

Root folder: sides-employer-client

 ./build.xml

 147

Ant build file (requires Apache Ant 1.7.1 or later)

o Run "ant build" to compile

o Run "ant run-post" to execute sample Employer/TPA Post ws call

o Run "ant run-pull" to execute sample Employer/TPA Pull/Employer/TPA Pull

Acknowledgement ws calls

 ./run-post.*

Unix/Windows shell scripts to run sample Employer/TPA Post Model Connector

o build sample with "ant build" first

 ./run-pull.*

Unix/Windows shell scripts to run sample Employer/TPA Pull Model Connector

o build sample with "ant build" first

 ./src

Contains:

o Java source code

o The Spring config xml file (employer-ws-emulator-config.xml)

o Log4j config file (log4j.properties)

o Sample Java keystore file (test-employer.jks) with a sample emulator cert/key pair

and Broker cert for WS-Security

 ./lib

Contains required library jar files. All libraries used are open-source Apache LGPL-style

libraries which can be freely distributed.

 ./schemas –

Contains UI SIDES XML schema files and Employer/TPA WSDL file

 ./data

Contains sample payload xml data files for Employer/TPA Post (EmpPost.xml) and

Employer/TPA Pull Query (EmployerPullQuery1.xml)

 ./bin

Build destination folder for compiled Java class files.

7.2.2.2.2 RunTime Configuration

 148

The Model Connector has runtime configuration parameters that allow the employer/TPA to

setup its connector. The configuration is specified in the Spring config xml file. The bean that

specifies these parameters is the configParams bean. All Java Application Model Connector

classes use the same Spring configuration file, employer-ws-emulator-config.xml.

Table 47 - ConfigParam options

Parameter Name Applies To Definition

debugLogFilePath Post and Pull The fully qualified location of the debug log file; it

contains all the information in all the log files plus

detailed information on the state of the Model

Connectors workings.

resultsLogFilePath Post and Pull The fully qualified location of the results log file; it

contains all the information with the results from the

call to the Broker.

brptLogFilePath Post and Pull The fully qualified location of the brpt log file; it

contains all the information with the results from the

BRPT.

pdfFilePath Pull The fully qualified location of the PDF file and

attachments; it will contain all the response received

in PDF form with all of the attachments decoded and

stored in the same directory

writeRequestsAsPDF Pull A boolean value that is “true” if the requests should

be printed out as the PDF and “false” otherwise.

requestFlatFilePath Pull The fully qualified location of the flat file containing

the Request information; it will contain all the

requests received in flat file format with all of the

attachments still encoded

writeRequestsAsFlatFile Pull A boolean value that is “true” if the requests should

be written in the flat file format and “false”

otherwise.

pullAllFiles Pull A boolean value that is “true” if the connector wants

the system to pull all files until the message code = 2

and “false” if the connector wants to make the call

repeatedly (so as to allow the connector more

control).

7.2.2.2.3 Web Services Configuration

The URL of the SIDES Broker Web services and REDACTED configuration is specified in the

Spring config xml file. All Java Application Model Connector classes use the same Spring

configuration file, employer-ws-emulator-config.xml.

These are some important spring config file parameters:

1. parentEmulatorWebServiceTemplate bean's defaultUri property:

o The SIDES Broker Web services URL

2. wsSecurityInterceptorTemplate bean's securementUsername property:

 149

o The Employer X.509 Certificate/Key pair alias inside test-employer.jks

3. wsSecurityInterceptorTemplate bean's securementPassword and

validationCallbackHandler property:

o The Employer Private Key password inside test-employer.jks

4. cryptoFactoryBean bean's keyStoreLocation property:

o The file name of the Java keystore file containing certificates/key for WS-Security

Changing Employer Certificate/Key pair for use by Model Connectors

The sample Model Connector uses a REDACTED

1. Import the REDACTED file

o See the article REDACTED for helpful hints

2. Update REDACTED

3. Send the updated information on the REDACTED to the Broker.

7.2.2.2.4 Execution

This Model Connector contains four top-level Java classes with a main() method:

o EmployerPostClient

o EmployerPullClient

o EmployerPostClientDataFile

o EmployerPullClientDataFile

7.2.2.2.4.1 EmployerPostClient/EmployerPullClient

These files implement the Employer/TPA Post and the Employer/TPA Pull/Pull

Acknowledgment Web service calls respectively.

The EmployerPostClient and EmployerPullClient use JAXB2 library for manipulating XML

elements as Java beans.

The Model Connectors read message payload content from XML files in the designated folder,

send it to the test SIDES Broker Web services URL, and log Broker's response to the console.

The employer/TPA Post Model Connector expects five command line arguments:

Table 48 – Spring Employer/TPA Post Model Connector Command Line Arguments

Model Connector Argument Definition

SI | EV This is the exchange that the file is

destined for:

SI – Separation Information

EV – Earnings Verification

 150

Model Connector Argument Definition

"FROM" SOAP header This is the unique id of the Employer/TPA

that is sending the file.

"TO" SOAP header This is the unique id of the State that the

file is destined for.

"EmployerTPAResponseFileGUID" SOAP

header

This is the Employer/TPA Response File

GUID.

The payload XML source file The XML file that contains the payload for

the call.

To execute the Model Connector from the command line, type:

o java org.uisides.client.employer.EmployerPostClient SI|EV FROM TO

EmployerTPARequestFileGUID Payload_XML_File_Name

Sample Model Connector arguments are:

o java org.uisides.client.employer.EmployerPostClient SI BR999999999 ST

12345678901234567890123456789012 data/ResponseSI1.xml

where:

o SI is the exchange the file is destined for

o BR999999999 is the Employer Test unique id

o ST is the unique id for State Test UI SIDES endpoint

o 12345678901234567890123456789012 is a test EmployerTPAResponseFileGUID.

The employer/TPA Pull Model Connector expects five or six command line arguments:

Table 49 – Spring Employer/TPA Pull Model Connector Command Line Arguments

Model Connector Argument Definition

SI | EV This is the exchange that the file is

destined for:

SI – Separation Information

EV – Earnings Verification

"FROM" SOAP header This is the unique id of the State that is

sending the file.

"TO" SOAP header This must be “Broker.”

“PullCollection” SOAP header 1 for regular pull, 2 for re-pull by

transmission number, 3 for re-pull by date

range

The payload XML source file The XML file that contains the payload for

the call.

EmployerTPASOAPTransactionNumber The value of the

 151

Model Connector Argument Definition

(optional) “EmployerTPASOAPTransactionNumber”

SOAP header. Only required if the

pullCollection parameter is 2 (re-pull by

transaction number) or 3 (re-pull by date

range)

To execute the Model Connector from the command line, type:

o java org.uisides.client.employer.EmployerPullClient SI|EV FROM Broker PullCollection

Payload_XML_File_Name [EmployerTPASOAPTransactionNumber]

Sample Model Connector arguments are:

o java org.uisides.client.employer.EmployerPullClient SI BR999999999 Broker 1

data/EmployerSIPullQuery.xml

where:

o SI is the exchange the file is destined for

o BR999999999 is the Employer Test unique id

o 1 is the pull collection

7.2.2.2.4.2 EmployerPostClientDataFile/EmployerPullClientDataFile

These files implement the employer/TPA Post and the employer/TPA Pull/Pull Acknowledgment

Web service calls that read ASCII files. See Figure 1 and Figure 2.

The EmployerPostClientDateFile/EmployerPullClientDataFile Model Connectors read message

payload content from ASCII flat files in the designated folder, send it to the test SIDES Broker

Web services URL, and log Broker's response to the console.

The employer/TPA Post Data File Model Connector expects two command line arguments:

Table 50 – Spring Employer/TPA Post Data File Model Connector Command Line Arguments

Model Connector Argument Definition

SI | EV This is the exchange that the file is

destined for:

SI – Separation Information

EV – Earnings Verification

Data File This is the fully qualified path and name of

 152

Model Connector Argument Definition

the data file that contains the flat file

structure of the Response(s).

To execute the Model Connector from the command line, type:

o java org.uisides.client.employer.EmployerPostClientDataFile SI|EV Data_File_Name

Sample Model Connector arguments are:

o java org.uisides.client.employer.EmployerPostClientDataFile SI data/EmployerSIPost.txt

where:

o SI is the exchange the file is destined for

Example Employer Response File

#SOAP Headers

To:ST

From:BR999999999

FileGuid:12345678901234567890123456789014

StateRequestRecordGUID:30000000000000000000000000004003

BrokerRecordTransactionNumber:2013889

SSN:560348477

ClaimEffectiveDate:2007-06-04

ClaimNumber:388620

StateEmployerAccountNbr:0065560

CorrectedEmployerName:J C Penny

CorrectedStateEmployerAccountNbr:0123456789

CorrectedFEIN:987654321

OtherSSN:660348477

ClaimantNameWorkedAsForEmployer:Andy Wilson

ClaimantJobTitle:Customer Service Associate

SeasonalEmploymentInd:N

EmployerReportedClaimantFirstDayofWork:2007-10-11

EmployerReportedClaimantLastDayofWork:2007-10-14

EffectiveSeparationDate:2007-10-14

TotalEarnedWagesNeededInd:3

TotalWeeksWorkedNeededInd:3

AverageWeeklyWage:125.00

EmployerSepReasonCode:3

ReturnToWorkInd:N

WorkingAllAvailableHoursInd:N

NotWorkingAvailableHoursReason:NotWorkingAvailableHoursReason

LaborDisputeTypeInd:L

#Remuneration

RemunerationTypeCode:3

RemunerationAmountPerPeriod:999.99

 153

RemunerationPeriodFrequencyCode:B

DateRemunerationIssued:2007-10-15

EmployerAllocationInd:N

AllocationBeginDate:2007-10-15

AllocationEndDate:2007-10-22

AverageNumberofHoursWorkedperWeek:40

MandatoryRetirementInd:N

MandatoryPension:N

ContributoryorNotContributoryClaimantInd:N

ClaimantPensionContributionPercent:100

DischargeReasonCode:3

FinalIncidentReason:FinalIncidentReason

FinalIncidentDate:2007-10-13

ViolateCompanyPolicyInd:N

DischargePolicyAwareInd:N

DischargePolicyAwareExplanationCode:V

#PriorIncidentOccurrence

PriorIncidentDate:2007-10-10

PriorIncidentReason:None

PriorIncidentWarningInd:Y

PriorIncidentWarningDate:2007-10-10

PriorIncidentWarningDescription:Verbal

WhoDischargedName:Andy Wilson

WhoDischargedTitle:Customer Service Associate

VoluntarySepReasonCode:3

HiringAgreementChangesCode:3

HiringAgreementChangesComments:HiringAgreementChangesComments

ClaimantActionsToAvoidQuitInd:N

ContinuingWorkAvailableInd:N

PreparerTypeCode:T

PreparerCompanyName:J C Penny

PreparerTelephoneNumberPlusExt:9724312108

PreparerContactName:Ed A Jones

PreparerTitle:Project Manager

PreparerFaxNbr:9725312108

PreparerEmailAddress:edjones@jcpenneytest.com

The employer/TPA Pull Data File Model Connector expects two command line arguments:

Table 51 – Spring Employer/TPA Pull Model Connector Command Line Arguments

Model Connector Argument Definition

SI | EV This is the exchange that the file is

destined for:

SI – Separation Information

EV – Earnings Verification

Data File This is the fully qualified path and name of

the data file that contains the flat file

structure of the Request Collection Query.

To execute the Model Connector from the command line, type:

 154

o java org.uisides.client.state.EmployerPullClientDataFile SI|EV Data_File_Name

Sample Model Connector arguments are:

o java org.uisides.client.state.EmployerPullClientDataFile SI data/StateSIPullQuery.txt

where:

o SI is the exchange the file is destined for

Example Employer/TPA Pull File

#SOAP Header Values

From:BR000000003

To:Broker

PullCollection:3

EmployerTPASOAPTransactionNumber:141690

#pull query values

#mandatory field, same as From value

UniqueID:BR000000003

#optional fields based on PullCollection value

EmployerTPASOAPTransactionNumber:141690

BrokerRecordEffectiveDateFrom:2010-07-13T00:00:00

BrokerRecordEffectiveDateTo:2010-07-14T00:00:00

7.2.3 Model Connector - .Net (C#)

7.2.3.1 State Model Connector – .Net (C#)

This Model Connector class library and Windows console application demonstrates how a state

and employer connector can access the UI SIDES Broker Web services using a Windows .Net

client application written in C#.

The Model Connector was originally developed in C# using Visual Studio 2005 for .Net

Framework 2.0 with .Net 3.0 runtime components and WCF. The current version of the software

was refactored and updated for Visual Studio Express 2010, C# Edition.

In order to open the sample application in Visual Studio, the following system requirements must

be met:

 Visual Studio Express 2010 or later, C# Edition.

 Microsoft Windows SDK for .Net Framework 3.0 or later

7.2.3.1.1 Sample Folders and Files

 155

Root folder: sides-state-client-wcf

 ./StateClient.sln

o Visual Studio Express 2010 solution file. Double click to open Model Connector

projects inside Visual Studio.

o Solution contains two projects: StateClient, a class library project that implements

functionality for calling Broker Web services, and StateClientConsole, a

Windows Console application project which wraps StateClient class library to

provide access to its functionality via command prompt.

 ./StateClient.csproj

o Visual Studio Express 2010 C# Project file for StateClient class library. Produces

stateClient.dll executable class library.

 ./StateClient.cs, ./EvStateClient.cs

o C# source code file – main source code file for StateClient class library.

 ./util/XmlSerializerUtils.cs

o C# source code file containing static utility methods for reading/writing XML

files using XmlSerializer.

 ./util/DataFileReader.cs, ./util/DataFileWriter.cs

o C# source code files for the data file reader and writer

 .util/ClientUtils.cs

o C# source code file for the client utilities package

 ./Service References/StateBroker.cs, ./Service References/EvStateBroker.cs

o C# source code file containing the WCF Web service client implementation for

State Broker Web services. Generated by ServiceModel Metadata Utility Tool

(Svcutil.exe) Windows SDK tool from StateBroker.wsdl file and referenced XSD

(XML Schema) files.

 ./Service References/StateBroker.map, ./Service References/EvStateBroker.map

o Visual Studio file generated using “Add Service Reference” tool. Maps Test

Broker Web services URL to generated ServiceBroker.cs interfaces.

 ./App.config

o Main application configuration file, becomes stateClient.dll.config when project

is built.

 ./gen_svc_ref.bat

o Windows shell scripts to generate ./Service References/StateBroker.cs WCF client

code for State Broker Web services using Svcutil.exe Windows SDK tool

 ./StateClientConsole

o Contains console interface wrapper C# project files for StateClientConsole, a

Windows console application project which provides command-line interface for

the StateClient class library

 ./StateClientConsole/StateClientConsole.csproj

o StateClientConsole C# Windows console application project file. Part of

StateClient.sln solution.

 ./StateClientConsole/StateClientConsole.csproj

o StateClientConsole source code file. Parses command-line arguments and calls

method in stateClient.dll

 ./StateClientConsole/App.config

 156

o Console interface application configuration file, copy of ./App.config. Becomes

stateClientConsole.exe.config in output binaries.

 ./lib

o Contains log4net.dll class library – Apache Log4Net open-source logging library

 ./data

o Contains StateBroker.wsdl, XSD XML schema files referenced in the WSDL file,

sample Separation Request and Pull query XML files.

 ./bin, ./obj

o Build and debugging artifact destination folders for compiled application and

DLL files.

 ./certs

o Contains sample self-signed certificate/key pair for State Test endpoint (test-

state.pfx) and Broker certificates (broker-test.cer for Test Broker, broker-prod.cer

for Prod Broker). Cert-readme.txt file contains instructions for creating a

Windows cert/keypair .pfx file from an existing Java .jks keystore file.

7.2.3.1.2 Run Time Configuration

The Model Connector has runtime configuration parameters that allow the state to setup its

connector. These parameters are identified in the AppSettings section of the AppConfig file. In

Visual Studio at development time this file is named ./App.config (for StateBroker.dll) and

./StateClientConsole/App.config (for console interface). All versions of this file have identical

content. The keys used by the runtime configuration are detailed below.

Table 52 - AppSettings options

Key Name Applies To Definition

debugLogFilePath Post and Pull The fully qualified location of the debug log file; it

contains all the information in all the log files plus

detailed information on the state of the Model

Connectors workings.

resultsLogFilePath Post and Pull The fully qualified location of the results log file; it

contains all the information with the results from the

call to the Broker.

brptLogFilePath Post and Pull The fully qualified location of the brpt log file; it

contains all the information with the results from the

BRPT.

pinLogFilePath Post The fully qualified location of the pin log file; it

contains all the information on the new pin created if

the createPin config parameter is set to true

pdfFilePath Pull The fully qualified location of the PDF file and

attachments; it will contain all the response received

in PDF form with all of the attachments decoded and

stored in the same directory

writeResponsesAsPDF Pull A boolean value that is “true” if the responses should

 157

Key Name Applies To Definition

be printed out as the PDF and “false” otherwise.

responseFlatFilePath Pull The fully qualified location of the flat file containing

the Response information; it will contain all the

responses received in flat file format with all of the

attachments still encoded

writeResponsesAsFlatFile Pull A boolean value that is “true” if the responses should

be written in the flat file format and “false”

otherwise.

createPin Post A boolean value that is “true” if the system is

directed to create the PIN for the request and “false”

otherwise.

pullAllFiles Pull A boolean value that is “true” if the connector wants

the system to pull all files until the message code = 2

and “false” if the connector wants to make the call

repeatedly (so as to allow the connector more

control).

7.2.3.1.3 Web Services Configuration

Configuration parameters such as Broker Web services URL and WS-Security settings are

located in the StateClient.dll.config (if only stateClient.dll is used), as well as in

StateClientConsole.exe.config if the command-line interface is used. In Visual Studio at

development time this file is named ./App.config (for stateBroker.dll) and

./StateClientConsole/App.config (for console interface). All versions of this file have identical

content.

Notable configuration settings are:

 address attribute of the endpoint element: determines the Broker Web services URL used

by the client. By default, Test Broker Web services URL is used: <endpoint address=”

https:// REDACTED” …/>.

 httpTransport or httpsTransport child elements of binding element: one of these elements

must be present, and must reflect the URL type in endpoint address attribute as described

above. Use <httpTransport/> for non-secure Web service URL like

http://localhost:8080/sides-trunk/ws, and <httpsTransport

authenticationScheme="Negotiate" maxReceivedMessageSize="10000000"/> for secure

URLs. httpsTransmport element is enabled by default to correspond to the secure Test

Broker URL (https REDACTED).

 findValue attribute of REDACTED

 findValue attribute REDACTED

In order to be able to run this Model Connector, you must first install the client

 158

REDACTED

7.2.3.1.4 Build and Execution

To build Model Connector executables, run “Build->Rebuild Solution” from Visual Studio

menu. The StateClientConsole project is configured as the startup project, so if you select

Debug->Start Debugging from Visual Studio menu, org.uisides.client.state.StateClientConsole’s

main() method will invoked, defined in ./StateClientConsole/StateClientConsole.cs. Since the

method expects command-line arguments, the arguments can be specified by right-clicking the

StateClientConsole project node inside Solution Explorer, then selecting Properties. In the

properties page that opens, select the Debug tab and type the parameters in the “Command line

arguments” field.

The command-line interface expects the following types of arguments.

For State Post, the arguments are:

stateClientConsole post SI|EV From To StateRequestFileGUID payloadFileName [SEIN PIN]

Table 53 – .Net (C#) State Post Model Connector Command Line Arguments

Model connector

Argument

Definition

Post The operation name indicating State Post

SI | EV This is the exchange that the file is destined for:

SI – Separation Information

EV – Earnings Verification

From The value of the “From” SOAP header, which is the unique ID of

the State as defined by the Broker admin, for example “ST” for State

Test endpoint

To The value of the “To” SOAP header, the unique ID of the

destination employer/TPA as defined by the Broker admin, for

example “BR999999999” for Employer Test endpoint

StateRequestFileGUID The value of the “StateRequestFileGUID” SOAP header, for

example “12345678901234567890123456789012”

payloadFileName The path to the XML file with StateSeparationRequestCollection as

the root element

SEIN (Optional) The SEIN (State employer identification number) for the destination

employer/TPA. Only required if the destination employer/TPA is

expected to use the SIDES Employer Website(SEW) (not regular

SIDES Web services) to provide a response.

PIN (Optional) The PIN (personal identification number) for the destination

employer/TPA to use when accessing the SEW Website. Only

required if the destination employer/TPA is expected to use the SEW

Website (not regular SIDES Web services) to provide a response.

 159

Here is an example command for State Test endpoint posting/sending data in data/StatePost.xml

file to Employer Test endpoint (BR999999999):

stateClientConsole post SI ST BR999999999 12345678901234567890123456789012

data\StatePost.xml

The State client will send the content of data\StatePost.xml in a properly secured SOAP message

with specified header values, and will print out the response payload from Broker (an

acknowledgment) along with any response SOAP header values. The response to the example

command should look like this:

2010-07-07 19:09:28,894 [1] DEBUG [(null)] - Response From header:

Broker

2010-07-07 19:09:28,894 [1] DEBUG [(null)] - Response To header: ST

2010-07-07 19:09:28,894 [1] DEBUG [(null)] - Response

StateRequestFileGUID header: 12345678901234567890123456789012

2010-07-07 19:09:28,894 [1] DEBUG [(null)] - Response MessageCode

header: 1

2010-07-07 19:09:29,067 [1] DEBUG [(null)] - Response: <?xml

version="1.0"?>

<StateSeparationRequestCollectionAcknowledgement

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <StateRequestFileGUID xmlns="https:// REDACTED

/schemas">12345678901234567890123456789012</StateRequestFileGUID>

 <NumberOfRequestRecordsReceived xmlns="https:// REDACTED

/schemas">1</NumberOfRequestRecordsReceived>

 <NumberOfRequestRecordsInError xmlns="https:// REDACTED

/schemas">0</NumberOfRequestRecordsInError>

 <DateStartedReceivingTransmission xmlns="https:// REDACTED

/schemas">2010-07-07T19:09:28.489-

05:00</DateStartedReceivingTransmission>

 <DateFinishedReceivingTransmission xmlns="https:// REDACTED

/schemas">2010-07-07T19:09:28.718-

05:00</DateFinishedReceivingTransmission>

</StateSeparationRequestCollectionAcknowledgement>

2010-07-07 19:09:29,068 [1] DEBUG [(null)] - Press any key to exit.

For State Pull, the arguments are:

stateClientConsole pull SI|EV From To pullCollection payloadFileName [stateSoapTnNumber]

Table 54 – .Net (C#) State Pull Model Connector Command Line Arguments

Model Connector Argument Definition

Pull The operation name indicating State Pull

SI | EV This is the exchange that the file is destined for:

SI – Separation Information

EV – Earnings Verification

From The value of the “From” SOAP header, which is the unique

ID of the State as defined by the Broker admin, for example

 160

Model Connector Argument Definition

“ST” for State Test endpoint

To The value of the “To” SOAP header, which is always

“Broker” for pull operations

pullCollection The value of the “PullCollection” SOAP header indicating

type of pull, one of: 1 for regular pull, 2 for re-pull by

transmission number, 3 for re-pull by date range

payloadFileName The path to the XML file

stateSoapTnNumber (optional) The value of the “StateSOAPTransactionNumber” SOAP

header. Only required if the pullCollection parameter is 2

(re-pull by transaction number) or 3 (re-pull by date range)

Here is an example command for State Test endpoint pulling any staged responses (regular pull,

pullCollection = 1) based on query parameters in data/StatePullQuery.xml:

stateClientConsole pull SI ST Broker 1 data\StatePullQuery.xml

The State client will send the content of data\StatePullQuery.xml in a properly secured SOAP

message with specified header values, and will print out the response payload from Broker (a

collection of responses if any) along with any response SOAP header values. The client will then

print out and send and acknowledgement to Broker to acknowledge pulled responses. The

response to the example command should look like this (an empty responses collection was

pulled in this case):

2010-07-07 19:12:33,477 [1] DEBUG [(null)] - Response From header:

Broker

2010-07-07 19:12:33,477 [1] DEBUG [(null)] - Response To header: ST

2010-07-07 19:12:33,477 [1] DEBUG [(null)] - Response

StateSOAPTransactionNumber header: 48302

2010-07-07 19:12:33,477 [1] DEBUG [(null)] - Response

NextStateSOAPTransactionNumber header:

2010-07-07 19:12:33,477 [1] DEBUG [(null)] - Response MessageCode

header: 2

2010-07-07 19:12:33,696 [1] DEBUG [(null)] - Response: <?xml

version="1.0"?>

<StateSeparationResponseCollection

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" />

2010-07-07 19:12:34,094 [1] DEBUG [(null)] - Sent acknowledgment: <?xml

version="1.0"?>

<StateSeparationResponseCollectionAcknowledgement

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <StateSOAPTransmissionNumber xmlns="https:// REDACTED

/schemas">48302</StateSOAPTransmissionNumber>

 <NumberOfResponseRecordsReceived xmlns="https:// REDACTED

/schemas">0</NumberOfResponseRecordsReceived>

 <NumberOfResponseRecordsInError xmlns="https:// REDACTED

/schemas">0</NumberOfResponseRecordsInError>

 161

 <DateStartedReceivingTransmission xmlns="https:// REDACTED

/schemas">0001-01-01T00:00:00</DateStartedReceivingTransmission>

 <DateFinishedReceivingTransmission xmlns="https:// REDACTED

/schemas">0001-01-01T00:00:00</DateFinishedReceivingTransmission>

</StateSeparationResponseCollectionAcknowledgement>

2010-07-07 19:12:34,095 [1] DEBUG [(null)] - Press any key to exit.

7.2.3.1.4.1 StateClientConsole with ASCII file

This file implements the State Post and the State Pull/Pull Acknowledgment Web service calls

respectively that read ASCII files. See Figure 1 and Figure 2.

The StateClientConsole with ASCII file Model Connectors reads message payload content from

ASCII flat files in the designated folder, sends it to the test SIDES Broker Web services URL,

and logs the Broker's response to the console/log files.

The State Post Model Connector expects three command line arguments:

Table 55 – .Net State Post Data File Model Connector Command Line Arguments

Model Connector Argument Definition

SI | EV This is the exchange that the file is

destined for:

SI – Separation Information

EV – Earnings Verification

Post This is a Post command

Data File This is the fully qualified path and name of

the data file that contains the flat file

structure of the Separation Request(s).

To execute the Model Connector from the command line, type:

o StateClientConsole SI|EV post Data_File_Name

Sample Model Connector arguments are:

o StateClientConsoleDataFile SI post data/StateSIPost.txt

where:

o SI is the exchange the file is destined for

Example State Request File

#SOAP Header Values

To:BR999999999

 162

From:ST

FileGuid:01234567890123456789012345678901

StateRequestRecordGUID:c755d30ed7dd4662bc0452e9050c00df

SSN:000989494

ClaimEffectiveDate:2008-09-28

ClaimNumber:0

StateEmployerAccountNbr:342424001

EmployerName:ELDORA ENTERPRISES LTD LIABILITY CO

FEIN:841173055

TypeofEmployerCode:1

TypeofClaimCode:1

BenefitYearBeginDate:2008-09-28

RequestingStateAbbreviation:CO

UIOfficeName:CO CDLE

UIOfficePhone:3033189055

UIOfficeFax:3033189014

ClaimantLastName:WHEELOCK

ClaimantFirstName:PHILIPPE

ClaimantMiddleInitial:M

ClaimantJobTitle:SKI PATROL

ClaimantReportedFirstDayofWork:2005-11-25

ClaimantReportedLastDayofWork:2008-04-10

WagesWeeksNeededCode:NA

ClaimantSepReasonCode:1

UniqueAttachmentId:01

DescriptionofAttachmentCode:1

TypeofDocument:test-file.txt

ActionableAttachment:3

AttachmentSize:2000

AttachmentData:QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQU

FBDQpCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCDQp

DQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDDQpERERE

REQNCkVFRUVFRUVFRUVFR

UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUUNCkZGRkZGRkZGRkZGRkZGRk

ZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkYNCkdHR0dHR0dHR0dHR0dHR0dHR0d

HR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0cNCkhISEhISEhISEhISEhISEhISEhISEhISEhI

SEhISEhISEhISEhISEhISEhISEhISEgNCklJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJS

UlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJDQpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSk

pKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSg0KS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0t

LS0tLS0tLS0tLS0tLS0tLSw0KTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExM

TExMTExMTExMTEwNCk1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU0NCk5OT

k5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk4NCk9PT09PT09PT0

9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT08NClBQUFBQUFBQUFBQUFBQUFB

QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQDQpRUVFRUVFRUVFRUVFRUVFRUVFRUVFR

UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRDQpSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSU

lJSUlJSUlJSUlJSUlJSUlJSUlJSUg0KU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1

NTU1NTU1NTU1NTU1NTU1MNClRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFR

UVFRUVFRUVFRUDQpBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB

QUENCkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkINC

kNDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0MNCkRERE

RERA0KRUVFRUVFRUVFRUV

FRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRQ0KRkZGRkZGRkZGRkZGRkZG

RkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRg0KR0dHR0dHR0dHR0dHR0dHR0dHR

0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHRw0KSEhISEhISEhISEhISEhISEhISEhISEhISE

 163

hISEhISEhISEhISEhISEhISEhISEhISA0KSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUl

JSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUkNCkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpK

SkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKDQpLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS

0tLS0tLS0tLS0tLS0tLS0tLDQpMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTE

xMTExMTExMTExMTA0KTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTQ0KTk5

OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTg0KT09PT09PT09P

T09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PTw0KUFBQUFBQUFBQUFBQUFBQU

FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFANClFRUVFRUVFRUVFRUVFRUVFRUVFRUV

FRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVENClJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJ

SUlJSUlJSUlJSUlJSUlJSUlJSUlJSDQpTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NT

U1NTU1NTU1NTU1NTU1NTUw0KVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUV

FRUVFRUVFRUVFQNCg==

UniqueAttachmentId:02

DescriptionofAttachmentCode:1

TypeofDocument:test-file2.txt

ActionableAttachment:3

AttachmentSize:2000

AttachmentData:QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQU

FBDQpCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCDQp

DQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDDQpERERE

REQNCkVFRUVFRUVFRUVFR

UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUUNCkZGRkZGRkZGRkZGRkZGRk

ZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkYNCkdHR0dHR0dHR0dHR0dHR0dHR0d

HR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0cNCkhISEhISEhISEhISEhISEhISEhISEhISEhI

SEhISEhISEhISEhISEhISEhISEhISEgNCklJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJS

UlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJDQpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSk

pKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSg0KS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0t

LS0tLS0tLS0tLS0tLS0tLSw0KTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExM

TExMTExMTExMTEwNCk1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU0NCk5OT

k5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk4NCk9PT09PT09PT0

9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT08NClBQUFBQUFBQUFBQUFBQUFB

QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQDQpRUVFRUVFRUVFRUVFRUVFRUVFRUVFR

UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRDQpSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSU

lJSUlJSUlJSUlJSUlJSUlJSUlJSUg0KU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1

NTU1NTU1NTU1NTU1NTU1MNClRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFR

UVFRUVFRUVFRUDQpBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB

QUENCkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkINC

kNDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0MNCkRERE

RERA0KRUVFRUVFRUVFRUV

FRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRQ0KRkZGRkZGRkZGRkZGRkZG

RkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRg0KR0dHR0dHR0dHR0dHR0dHR0dHR

0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHRw0KSEhISEhISEhISEhISEhISEhISEhISEhISE

hISEhISEhISEhISEhISEhISEhISEhISA0KSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUl

JSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUkNCkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpK

SkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKDQpLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS

0tLS0tLS0tLS0tLS0tLS0tLDQpMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTE

xMTExMTExMTExMTA0KTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTQ0KTk5

OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTg0KT09PT09PT09P

T09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PTw0KUFBQUFBQUFBQUFBQUFBQU

FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFANClFRUVFRUVFRUVFRUVFRUVFRUVFRUV

FRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVENClJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJ

SUlJSUlJSUlJSUlJSUlJSUlJSUlJSDQpTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NT

U1NTU1NTU1NTU1NTU1NTUw0KVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUV

FRUVFRUVFRUVFQNCg==

 164

RequestDate:2008-09-28

ResponseDueDate:2008-10-13

FormNumber:UIB-290e

The State Pull Client Model Connector expects three command line arguments:

Table 56 – .Net State Pull Model Connector Command Line Arguments

Model Connector Argument Definition

SI | EV This is the exchange that the file is

destined for:

SI – Separation Information

EV – Earnings Verification

Pull This is a Pull command

Data File This is the fully qualified path and name of

the data file that contains the flat file

structure of the Response Collection

Query.

To execute the Model Connector from the command line, type:

o StateClientConsole SI|EV pull Data_File_Name

Sample Model Connector arguments are:

o StateClientConsole SI pull data/StateSIPullQuery.txt

where:

o SI is the exchange the file is destined for

Example State Pull File

#SOAP Header Values

From:ST

To:Broker

PullCollection:3

#StateSOAPTransactionNumber:141690

#pull query values

#mandatory field, same as From value

StatePostalCode:ST

#optional fields based on PullCollection value

#StateSOAPTransactionNumber:141690

BrokerRecordEffectiveDateFrom:2010-07-13T00:00:00

 165

BrokerRecordEffectiveDateTo:2010-07-14T00:00:00

7.2.3.2 Employer Model Connector – .Net (C#)

This Model Connector class library and Windows console application demonstrates how an

employer/TPA connector can access the UI SIDES Broker Web services using a Windows .Net

client application written in C#.

The Model Connector was originally developed in C# using Visual Studio 2005 for .Net

Framework 2.0 with .Net 3.0 runtime components and WCF. The current version of the software

was refactored and updated for Visual Studio Express 2010, C# Edition.

In order to open the sample application in Visual Studio, the following system requirements must

be met:

 Visual Studio Express 2010 or later, C# Edition.

 Microsoft Windows SDK for .Net Framework 3.0 or later

7.2.3.2.1 Sample Folders and Files

Root folder: sides-employer-client-wcf

 ./EmployerClient.sln

o Visual Studio Express 2010 solution file. Double click to open Model Connector

projects inside Visual Studio.

o Solution contains two projects: EmployerClient, a class library project that

implements functionality for calling Broker Web services, and

EmployerClientConsole, a Windows Console application project which wraps

EmployerClient class library to provide access to its functionality via command

prompt.

 ./EmployerClient.csproj

o Visual Studio Express 2010 C# Project file for EmployerClient class library.

Produces EmployerClient.dll executable class library.

 ./EmployerClient.cs, ./EvEmployerClient.cs

o C# source code file – main source code file for EmployerClient class library.

 ./util/XmlSerializerUtils.cs

o C# source code file containing static utility methods for reading/writing XML

files using XmlSerializer.

 ./util/DataFileReader.cs, ./util/DataFileWriter.cs

o C# source code files for the data file reader and writer

 .util/ClientUtils.cs

o C# source code file for the client utilities package

 ./Service References/EmployerBroker.cs, ./Service References/EvEmployerBroker.cs

o C# source code file containing the WCF Web service client implementation for

Employer Broker Web services. Generated by ServiceModel Metadata Utility

 166

Tool (Svcutil.exe) Windows SDK tool from EmployerBroker.wsdl file and

referenced XSD (XML Schema) files.

 ./Service References/EmployerBroker.map, ./Service References/EvEmployerBroker.map

o Visual Studio file generated using “Add Service Reference” tool. Maps Test

Broker Web services URL to generated EmployerBroker.cs interfaces.

 ./App.config

o Main application configuration file, becomes EmployerClient.dll.config when

project is built.

 ./gen_svc_ref.bat

o Windows shell scripts to generate ./Service References/EmployerBroker.cs WCF

client code for Employer Broker Web services using Svcutil.exe Windows SDK

tool

 ./EmployerClientConsole

o Contains console interface wrapper C# project files for EmployerClientConsole, a

Windows console application project which provides command-line interface for

the EmployerClient class library

 ./EmployerClientConsole/EmployerClientConsole.csproj

o EmployerClientConsole C# Windows console application project file. Part of

EmployerClient.sln solution.

 ./EmployerClientConsole/EmployerClientConsole.csproj

o EmployerClientConsole source code file. Parses command-line arguments and

calls method in EmployerClient.dll

 ./EmployerClientConsole/App.config

o Console interface application configuration file, copy of ./App.config. Becomes

EmployerClientConsole.exe.config in output binaries.

 ./lib

o Contains log4net.dll class library – Apache Log4Net open-source logging library

 ./data

o Contains EmployerBroker.wsdl, XSD XML schema files referenced in the WSDL

file, sample Separation Responses and Pull query XML files.

 ./bin, ./obj

o Build and debugging artifact destination folders for compiled application and

DLL files.

 ./certs REDACTED

7.2.3.2.2 Run Time Configuration

The Model Connector has runtime configuration parameters that allow the employer/TPA to

setup its connector. These parameters are identified in the AppSettings section of the AppConfig

file. In Visual Studio, at development time, this file is named ./App.config (for

EmployerBroker.dll) and ./EmployerClientConsole/App.config (for console interface). All

versions of this file have identical content. The keys used by the runtime configuration are

detailed below.

Table 57 - AppSettings options

 167

Key Name Applies To Definition

debugLogFilePath Post and Pull The fully qualified location of the debug log file; it

contains all the information in all the log files plus

detailed information on the state of the Model

Connectors workings.

resultsLogFilePath Post and Pull The fully qualified location of the results log file; it

contains all the information with the results from the

call to the Broker.

brptLogFilePath Post and Pull The fully qualified location of the brpt log file; it

contains all the information with the results from the

BRPT.

pdfFilePath Pull The fully qualified location of the PDF file and

attachments; it will contain all the requests received

in PDF form with all of the attachments decoded and

stored in the same directory

writeRequestsAsPDF Pull A boolean value that is “true” if the requests should

be printed out as the PDF and “false” otherwise.

requestFlatFilePath Pull The fully qualified location of the flat file containing

the Request information; it will contain all the

requests received in flat file format with all of the

attachments still encoded

writeRequestsAsFlatFile Pull A boolean value that is “true” if the requests should

be written in the flat file format and “false”

otherwise.

pullAllFiles Pull A boolean value that is “true” if the connector wants

the system to pull all files until the message code = 2

and “false” if the connector wants to make the call

repeatedly (so as to allow the connector more

control).

7.2.3.2.3 Web Services Configuration

Configuration parameters such as Broker Web services URL and REDACTED settings are

located in the EmployerClient.dll.config (if only EmployerClient.dll is used), as well as in

EmployerClientConsole.exe.config if the command-line interface is used. In Visual Studio at

development time this file is named ./App.config (for EmployerBroker.dll) and

./EmployerClientConsole/App.config (for console interface). All versions of this file have

identical content.

Notable configuration settings are:

 address attribute of the endpoint element: determines the Broker Web services URL used

by the client. By default, Test Broker Web services URL is used: <endpoint address=”

https:// REDACTED” …/>

 168

 httpTransport or httpsTransport child elements of binding element: one of these elements

must be present, and must reflect the URL type in endpoint address attribute as described

above. Use <httpTransport/> for non-secure Web service URL like

http://localhost:8080/sides-trunk/ws, and <httpsTransport

authenticationScheme="Negotiate" maxReceivedMessageSize="10000000"/> for secure

URLs. httpsTransmport element is enabled by default to correspond to the secure Test

Broker URL (https:// REDACTED)

 findValue REDACTED from the list of fields.

 findValue REDACTED dialog, and select “Serial number” from the list of fields.

In order to be able to run this Model Connector, you must first install REDACTED

7.2.3.2.4 Build and Execution

To build Model Connector executables, run “Build->Rebuild Solution” from Visual Studio

menu. The EmployerClientConsole project is configured as the startup project, so if you select

Debug->Start Debugging from Visual Studio menu,

org.uisides.client.employer.EmployerClientConsole’s main() method will be invoked, defined in

./StateClientConsole/StateClientConsole.cs. Since the method expects command-line arguments,

the arguments can be specified by right-clicking the StateClientConsole project node inside

Solution Explorer, then selecting Properties. In the properties page that opens, select the Debug

tab and type the parameters in the “Command line arguments” field.

The command-line interface expects the following types of arguments.

For Employer Post, the arguments are:

EmployerClientConsole post SI|EV From To EmployerTPARequestFileGUID payloadFileName

Table 58 – .Net (C#) Employer Post Model Connector Command Line Arguments

Model connector Argument Definition

Post The operation name indicating Employer Post

SI | EV This is the exchange that the file is destined for:

SI – Separation Information

EV – Earnings Verification

From The value of the “From” SOAP header, which is the unique

ID of the Employer as defined by the Broker admin, for

 169

Model connector Argument Definition

example “BR999999999” for Employer Test endpoint

To The value of the “To” SOAP header, the unique ID of the

destination State as defined by the Broker admin, for

example “ST” for State Test endpoint

EmployerTPAResponseFileGUID The value of the “EmployerTPAResponseFileGUID”

SOAP header, for example

“12345678901234567890123456789012”

payloadFileName The path to the XML file with

EmployerTPASeparationResponseCollection as the root

element

Here is an example command for Employer Test endpoint posting/sending data in

data/EmpPost.xml file to State Test endpoint (ST):

EmployerClientConsole post SI BR999999999 ST

12345678901234567890123456789012 data\EmpPost.xml

The Employer client will send the content of data\EmpPost.xml in a properly secured SOAP

message with specified header values, and will print out the response payload from Broker (an

acknowledgment) along with any response SOAP header values. The response to the example

command should look like this (in this case Broker rejected the only response since it couldn’t

find a matching request):

2010-07-07 19:37:11,718 [1] DEBUG [(null)] - Response From header:

Broker

2010-07-07 19:37:11,718 [1] DEBUG [(null)] - Response To header:

BR999999999

2010-07-07 19:37:11,718 [1] DEBUG [(null)] - Response

EmployerTPAResponseFileGUID header: 123456778901234567890123456789012

2010-07-07 19:37:11,718 [1] DEBUG [(null)] - Response MessageCode

header: 2

2010-07-07 19:37:11,875 [1] DEBUG [(null)] - Response: <?xml

version="1.0"?>

<EmployerTPASeparationResponseCollectionAcknowledgement

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <EmployerTPAResponseFileGUID xmlns="https:// REDACTED

/schemas">123456778901234567890123456789012</EmployerTPAResponseFileGUI

D>

 <FailedSeparationResponse xmlns="https:// REDACTED /schemas">

<StateRequestRecordGUID>c755d30ed7dd4662bc0452e9050c00cd</StateRequestR

ecordGUID>

<BrokerRecordTransactionNumber>27550</BrokerRecordTransactionNumber>

 <ErrorOccurrence>

 <ErrorCode>210</ErrorCode>

 <ErrorMessage>Business Rule violation - There is no matching

Claim Request record with fields matching A1 to B1, A2 to B2, A3 to B3,

 170

A4 to B4, the StateRequestRecordGUID, and the

BrokerRecordTransactionNumber.</ErrorMessage>

 </ErrorOccurrence>

 </FailedSeparationResponse>

 <NumberOfResponseRecordsReceived xmlns="https:// REDACTED

/schemas">1</NumberOfResponseRecordsReceived>

 <NumberOfResponseRecordsInError xmlns="https:// REDACTED

/schemas">1</NumberOfResponseRecordsInError>

 <DateStartedReceivingTransmission xmlns="https:// REDACTED

/schemas">2010-07-07T19:37:09.343-

05:00</DateStartedReceivingTransmission>

 <DateFinishedReceivingTransmission xmlns="https:// REDACTED

/schemas">2010-07-07T19:37:11.557-

05:00</DateFinishedReceivingTransmission>

</EmployerTPASeparationResponseCollectionAcknowledgement>

2010-07-07 19:37:11,876 [1] DEBUG [(null)] - Press any key to exit.

For Employer Pull, the arguments are:

EmployerClientConsole pull SI|EV From To pullCollection payloadFileName

[employerSoapTnNumber]

Table 59 – .Net (C#) Employer Pull Model Connector Command Line Arguments

Model connector

Argument

Definition

Pull The operation name indicating Employer Pull

SI | EV This is the exchange that the file is destined for:

SI – Separation Information

EV – Earnings Verification

From The value of the “From” SOAP header, which is the unique

ID of the Employer as defined by the Broker admin, for

example “BR999999999” for Employer Test endpoint

To The value of the “To” SOAP header, which is always

“Broker” for pull operations

pullCollection The value of the “PullCollection” SOAP header indicating

type of pull, one of: 1, 2 or 3

payloadFileName The path to the XML file with

EmployerTPASeparationRequestCollectionQuery as the root

element

employerSoapTnNumber

(optional)

The value of the “EmployerTPASOAPTransactionNumber”

SOAP header. Only required if the pullCollection parameter

is 2 (re-pull by transaction number) or 3 (re-pull by date

range)

Here is an example command for Employer Test endpoint pulling any staged responses (regular

pull, pullCollection = 1) based on query parameters in data/EmployerPullQuery.xml:

 171

EmployerClientConsole pull SI ST Broker 1 data\EmployerPullQuery.xml

The Employer client will send the content of data\EmployerPullQuery.xml in a properly secured

SOAP message with specified header values, and will print out the response payload from

Broker (a collection of requests if any) along with any response SOAP header values. The client

will then print out and send and acknowledgement to Broker to acknowledge pulled responses.

The response to the example command should look like this (an empty requests collection was

pulled in this case):

2010-07-07 19:45:14,001 [1] DEBUG [(null)] - Response From header:

Broker

2010-07-07 19:45:14,001 [1] DEBUG [(null)] - Response To header:

BR999999999

2010-07-07 19:45:14,001 [1] DEBUG [(null)] - Response

EmployerTPASOAPTransactionNumber header: 48306

2010-07-07 19:45:14,001 [1] DEBUG [(null)] - Response

NextEmployerTPASOAPTransactionNumber header:

2010-07-07 19:45:14,002 [1] DEBUG [(null)] - Response MessageCode

header: 2

2010-07-07 19:45:14,203 [1] DEBUG [(null)] - Response: <?xml

version="1.0"?>

<EmployerTPASeparationRequestCollection

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" />

2010-07-07 19:45:14,448 [1] DEBUG [(null)] - Sent acknowledgment: <?xml

version="1.0"?>

<EmployerTPASeparationRequestCollectionAcknowledgement

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <EmployerTPASOAPTransmissionNumber xmlns="https:// REDACTED

/schemas">48306</EmployerTPASOAPTransmissionNumber>

 <NumberOfRequestRecordsReceived xmlns="https:// REDACTED

/schemas">0</NumberOfRequestRecordsReceived>

 <NumberOfRequestRecordsInError xmlns="https:// REDACTED

/schemas">0</NumberOfRequestRecordsInError>

 <DateStartedReceivingTransmission xmlns="https:// REDACTED

/schemas">0001-01-01T00:00:00</DateStartedReceivingTransmission>

 <DateFinishedReceivingTransmission xmlns="https:// REDACTED

/schemas">0001-01-01T00:00:00</DateFinishedReceivingTransmission>

</EmployerTPASeparationRequestCollectionAcknowledgement>

2010-07-07 19:45:14,452 [1] DEBUG [(null)] - Press any key to exit.

7.2.3.2.4.1 EmployerClientConsole with ASCII file

This file implements the employer/TPA Post and the employer/TPA Pull/Pull Acknowledgment

Web service calls that read ASCII files. See Figure 1 and Figure 2.

The EmployerClientConsole Model Connector reads message payload content from ASCII flat

files in the designated folder, sends it to the test SIDES Broker Web services URL, and logs the

Broker's response to the console/log files.

 172

The Employer/TPA Post with ASCII File Model Connector expects three command line

arguments:

Table 60 – .Net Employer/TPA Post Data File Model Connector Command Line Arguments

Model Connector Argument Definition

SI | EV This is the exchange that the file is

destined for:

SI – Separation Information

EV – Earnings Verification

Post The Post command.

Data File This is the fully qualified path and name of

the data file that contains the flat file

structure of the Separation Response(s).

To execute the Model Connector from the command line, type:

o EmployerClientConsole SI|EV post Data_File_Name

Sample Model Connector arguments are:

o EmployerClientConsole SI post data/EmployerSIPost.txt

where:

o SI is the exchange the file is destined for

Example Employer Response File

#SOAP Headers

To:ST

From:BR999999999

FileGuid:12345678901234567890123456789014

StateRequestRecordGUID:30000000000000000000000000004003

BrokerRecordTransactionNumber:2013889

SSN:560348477

ClaimEffectiveDate:2007-06-04

ClaimNumber:388620

StateEmployerAccountNbr:0065560

CorrectedEmployerName:J C Penny

CorrectedStateEmployerAccountNbr:0123456789

CorrectedFEIN:987654321

OtherSSN:660348477

ClaimantNameWorkedAsForEmployer:Andy Wilson

ClaimantJobTitle:Customer Service Associate

SeasonalEmploymentInd:N

EmployerReportedClaimantFirstDayofWork:2007-10-11

EmployerReportedClaimantLastDayofWork:2007-10-14

 173

EffectiveSeparationDate:2007-10-14

TotalEarnedWagesNeededInd:3

TotalWeeksWorkedNeededInd:3

AverageWeeklyWage:125.00

EmployerSepReasonCode:3

ReturnToWorkInd:N

WorkingAllAvailableHoursInd:N

NotWorkingAvailableHoursReason:NotWorkingAvailableHoursReason

LaborDisputeTypeInd:L

#Remuneration

RemunerationTypeCode:3

RemunerationAmountPerPeriod:999.99

RemunerationPeriodFrequencyCode:B

DateRemunerationIssued:2007-10-15

EmployerAllocationInd:N

AllocationBeginDate:2007-10-15

AllocationEndDate:2007-10-22

AverageNumberofHoursWorkedperWeek:40

MandatoryRetirementInd:N

MandatoryPension:N

ContributoryorNotContributoryClaimantInd:N

ClaimantPensionContributionPercent:100

DischargeReasonCode:3

FinalIncidentReason:FinalIncidentReason

FinalIncidentDate:2007-10-13

ViolateCompanyPolicyInd:N

DischargePolicyAwareInd:N

DischargePolicyAwareExplanationCode:V

#PriorIncidentOccurrence

PriorIncidentDate:2007-10-10

PriorIncidentReason:None

PriorIncidentWarningInd:Y

PriorIncidentWarningDate:2007-10-10

PriorIncidentWarningDescription:Verbal

WhoDischargedName:Andy Wilson

WhoDischargedTitle:Customer Service Associate

VoluntarySepReasonCode:3

HiringAgreementChangesCode:3

HiringAgreementChangesComments:HiringAgreementChangesComments

ClaimantActionsToAvoidQuitInd:N

ContinuingWorkAvailableInd:N

PreparerTypeCode:T

PreparerCompanyName:J C Penny

PreparerTelephoneNumberPlusExt:9724312108

PreparerContactName:Ed A Jones

PreparerTitle:Project Manager

PreparerFaxNbr:9725312108

PreparerEmailAddress:edjones@jcpenneytest.com

The Employer/TPA Pull Data File Model Connector expects three command line arguments:

 174

Table 61 – .Net Employer/TPA Pull Model Connector Command Line Arguments

Model Connector Argument Definition

SI | EV This is the exchange that the file is

destined for:

SI – Separation Information

EV – Earnings Verification

Pull The Pull command

Data File This is the fully qualified path and name of

the data file that contains the flat file

structure of the Request Collection Query.

To execute the Model Connector from the command line, type:

o EmployerClientConsole SI|EV pull Data_File_Name

Sample Model Connector arguments are:

o EmployerClientConsole SI pull data/StateSIPullQuery.txt

where:

o SI is the exchange the file is destined for

Example Employer/TPA Pull File

#SOAP Header Values

From:BR000000003

To:Broker

PullCollection:3

EmployerTPASOAPTransactionNumber:141690

#pull query values

#mandatory field, same as From value

UniqueID:BR000000003

#optional fields based on PullCollection value

EmployerTPASOAPTransactionNumber:141690

BrokerRecordEffectiveDateFrom:2010-07-13T00:00:00

BrokerRecordEffectiveDateTo:2010-07-14T00:00:00

7.2.4 Model Connector – JAX-WS

7.2.4.1 State Model Connector – JAX-WS

This sample Model Connector demonstrates how a State can access the UI SIDES Broker Web

services using JAX-WS libraries.

The Model Connector was developed on JDK 1.5 (Java 5), but should also run on jdk 1.4 and

Java 6.

 175

The following main libraries are used (parts of Sun Microsystems Metro v1.4 release):

 JAX-WS RI 2.1.4.1

 JAXB RI 2.1.7.1

For convenience, this sample includes all necessary Eclipse project config files and can be

imported into an existing Eclipse IDE workspace. Eclipse 3.5 (Galileo) or later is required.

7.2.4.1.1 Sample Folders and Files

Root folder: sides-state-client-jax-ws

 ./build.xml

Ant build file (requires Apache Ant 1.7.1 or later)

o Run “ant generate-jaxws-client” to generate JAX-WS client Java beans from

WSDL (creates src/org/uisides/client/state/generated classes)

o Run "ant build" to compile

 ./src

Contains:

o Java source code

o Log4j config file (log4j.properties)

o State-ws-client-config.xml – run time settings

o client-security-env.properties (JAX-WS security config file)

o META-INF/test-state.jks – keystore file with state key/certificate pair and Broker

certificate

 ./lib

Contains required library jar files. All libraries used are open-source Apache LGPL-style

libraries which can be freely distributed.

 ./schemas –

Contains UI SIDES XML schema files and State WSDL file

 ./data

Contains sample payload xml data files for State Post (StatePost.xml)

 ./bin

Build destination folder for compiled Java class files.

7.2.4.1.2 RunTime Configuration

The Model Connector has runtime configuration parameters that allow the state to setup its

connector. The configuration is specified in a config xml file. The bean that specifies these

 176

parameters is the configParams bean. All Java JAX-WS Application Model Connector classes

use the same configuration file, state-ws-emulator-config.xml.

Table 62 - ConfigParam options

Parameter Name Applies To Definition

debugLogFilePath Post and Pull The fully qualified location of the debug log file; it

contains all the information in all the log files plus

detailed information on the state of the Model

Connectors workings.

resultsLogFilePath Post and Pull The fully qualified location of the results log file; it

contains all the information with the results from the

call to the Broker.

brptLogFilePath Post and Pull The fully qualified location of the brpt log file; it

contains all the information with the results from the

BRPT.

pinLogFilePath Post The fully qualified location of the pin log file; it

contains all the information on the new pin created if

the createPin config parameter is set to true

pdfFilePath Pull The fully qualified location of the PDF file and

attachments; it will contain all the response received

in PDF form with all of the attachments decoded and

stored in the same directory

writeResponsesAsPDF Pull A boolean value that is “true” if the responses should

be printed out as the PDF and “false” otherwise.

responseFlatFilePath Pull The fully qualified location of the flat file containing

the Response information; it will contain all the

responses received in flat file format with all of the

attachments still encoded

writeResponsesAsFlatFile Pull A boolean value that is “true” if the responses should

be written in the flat file format and “false”

otherwise.

createPin Post A boolean value that is “true” if the system is

directed to create the PIN for the request and “false”

otherwise.

pullAllFiles Pull A boolean value that is “true” if the connector wants

the system to pull all files until the message code = 2

and “false” if the connector wants to make the call

repeatedly (so as to allow the connector more

control).

7.2.4.1.3 Web Services Configuration

The URL of the SIDES Broker Web services and REDACTED configuration is specified in the

client-security-env.properties file.

7.2.4.1.4 Execution

 177

This Model Connector contains four top-level Java class with a main() method:

o StatePostClient

o StatePostClientDataFile

o StatePullClient

o StatePullClientDataFile

These files implement the State Post and State Pull respectively using JAX-WS.

7.2.4.1.4.1 StatePostClient/StatePullClient

The StatePostClient reads Separation Request SOAP message payload content from XML file in

the ./data folder, sends it to the test SIDES Broker Web services URL, and logs Broker's

responses to the console.

The Model Connector expects five or seven command line arguments:

Table 63 – JAX-WS State Post Model Connector Command Line Arguments

Model connector Argument Definition

SI | EV This is the exchange that the file is

destined for:

SI – Separation Information

EV – Earnings Verification

"FROM" SOAP header This is the unique id of the State that is

sending the file.

"TO" SOAP header This is the unique id of the Employer/TPA

that the file is destined for.

"StateRequestFileGUID" SOAP header This is the State Request File GUID.

The payload XML source file The XML file that contains the payload for

the call.

SEIN SOAP header (optional) SEIN value if sending to SEW

employer/TPA

PIN SOAP header (optional) PIN value if sending to SEW

employer/TPA

To execute the State Post Model Connector from the command line, type:

o java –cp <classpath> org.uisides.client.state.StatePostClient SI|EV FROM TO

StateRequestFileGUID Payload_XML_File_Name [SEIN PIN]

Sample Model Connector arguments are:

o java –cp <classpath> org.uisides.client.state.StatePostClient SI ST BR999999999

12345678901234567890123456789012 data/StatePost.xml

 178

where:

o SI is the exchange to file is destined for

o ST is the State Test unique id

o BR999999999 is the unique id for Employer Test UI SIDES endpoint

o 12345678901234567890123456789012 is a test StateRequestFileGUID.

The StatePullClient reads State pull query SOAP message payload content from XML file in the

./data folder, sends it to the test SIDES Broker Web services URL, logs Broker's responses to the

console, then prepares and sends Broker the acknowledgement of received pull responses.

The Model Connector expects five or six command line arguments:

Table 64 – JAX-WS State Pull Model Connector Command Line Arguments

Model connector Argument Definition

SI | EV This is the exchange that the file is

destined for:

SI – Separation Information

EV – Earnings Verification

"FROM" SOAP header This is the unique id of the State that is

sending the pull query.

"TO" SOAP header Always “Broker” for Pull requests

“PullCollection” SOAP header 1 for regular pull, 2 for re-pull by

transmission number, 3 for re-pull by date

range

The payload XML source file The XML file that contains the payload for

the call.

StateSOAPTransactionNumber (optional) The value of the

“StateSOAPTransactionNumber” SOAP

header. Only required if the pullCollection

parameter is 2 (re-pull by transaction

number) or 3 (re-pull by date range)

To execute the State Pull Model Connector from the command line, type:

o java –cp <classpath> org.uisides.client.state.StatePullClient SI|EV FROM TO

PullCollection Payload_XML_File_Name [StateSOAPTransactionNumber]

Sample Model Connector arguments are:

o java –cp <classpath> org.uisides.client.state.StatePostClient SI ST Broker 1

data/StatePullQuery.xml

where:

o SI is the exchange that the file is destined for

 179

o ST is the State Test unique id

o Broker is the “To” value for all Pull requests

o 1 is the PullCollection value indicating a regular pull

7.2.4.1.4.2 StatePostClientDataFile/StatePullClientDataFile

These files implement the State Post and the State Pull/Pull Acknowledgment Web service calls

respectively that read ASCII files. See Figure 1 and Figure 2.

The StatePostClientDateFile/StatePullClientDataFile Model Connectors read message payload

content from ASCII flat files in the designated folder, send it to the test SIDES Broker Web

services URL, and log Broker's response to the console.

The State Post Data File Model Connector expects two command line arguments:

Table 65 – JAX-WS State Post Data File Model Connector Command Line Arguments

Model Connector Argument Definition

SI | EV This is the exchange that the file is

destined for:

SI – Separation Information

EV – Earnings Verification

Data File This is the fully qualified path and name of

the data file that contains the flat file

structure of the Separation Request(s).

To execute the Model Connector from the command line, type:

o java org.uisides.client.state.StatePostClientDataFile SI|EV Data_File_Name

Sample Model Connector arguments are:

o java org.uisides.client.state.StatePostClientDataFile SI data/StateSIPost.txt

where:

o SI is the exchange the file is destined for

Example State Request File

#SOAP Header Values

To:BR999999999

From:ST

FileGuid:01234567890123456789012345678901

StateRequestRecordGUID:c755d30ed7dd4662bc0452e9050c00df

SSN:000989494

 180

ClaimEffectiveDate:2008-09-28

ClaimNumber:0

StateEmployerAccountNbr:342424001

EmployerName:ELDORA ENTERPRISES LTD LIABILITY CO

FEIN:841173055

TypeofEmployerCode:1

TypeofClaimCode:1

BenefitYearBeginDate:2008-09-28

RequestingStateAbbreviation:CO

UIOfficeName:CO CDLE

UIOfficePhone:3033189055

UIOfficeFax:3033189014

ClaimantLastName:WHEELOCK

ClaimantFirstName:PHILIPPE

ClaimantMiddleInitial:M

ClaimantJobTitle:SKI PATROL

ClaimantReportedFirstDayofWork:2005-11-25

ClaimantReportedLastDayofWork:2008-04-10

WagesWeeksNeededCode:NA

ClaimantSepReasonCode:1

UniqueAttachmentId:01

DescriptionofAttachmentCode:1

TypeofDocument:test-file.txt

ActionableAttachment:3

AttachmentSize:2000

AttachmentData:QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQU

FBDQpCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCDQp

DQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDDQpERERE

REQNCkVFRUVFRUVFRUVFR

UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUUNCkZGRkZGRkZGRkZGRkZGRk

ZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkYNCkdHR0dHR0dHR0dHR0dHR0dHR0d

HR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0cNCkhISEhISEhISEhISEhISEhISEhISEhISEhI

SEhISEhISEhISEhISEhISEhISEhISEgNCklJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJS

UlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJDQpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSk

pKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSg0KS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0t

LS0tLS0tLS0tLS0tLS0tLSw0KTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExM

TExMTExMTExMTEwNCk1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU0NCk5OT

k5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk4NCk9PT09PT09PT0

9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT08NClBQUFBQUFBQUFBQUFBQUFB

QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQDQpRUVFRUVFRUVFRUVFRUVFRUVFRUVFR

UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRDQpSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSU

lJSUlJSUlJSUlJSUlJSUlJSUlJSUg0KU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1

NTU1NTU1NTU1NTU1NTU1MNClRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFR

UVFRUVFRUVFRUDQpBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB

QUENCkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkINC

kNDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0MNCkRERE

RERA0KRUVFRUVFRUVFRUV

FRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRQ0KRkZGRkZGRkZGRkZGRkZG

RkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRg0KR0dHR0dHR0dHR0dHR0dHR0dHR

0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHRw0KSEhISEhISEhISEhISEhISEhISEhISEhISE

hISEhISEhISEhISEhISEhISEhISEhISA0KSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUl

JSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUkNCkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpK

SkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKDQpLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS

0tLS0tLS0tLS0tLS0tLS0tLDQpMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTE

xMTExMTExMTExMTA0KTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTQ0KTk5

 181

OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTg0KT09PT09PT09P

T09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PTw0KUFBQUFBQUFBQUFBQUFBQU

FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFANClFRUVFRUVFRUVFRUVFRUVFRUVFRUV

FRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVENClJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJ

SUlJSUlJSUlJSUlJSUlJSUlJSUlJSDQpTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NT

U1NTU1NTU1NTU1NTU1NTUw0KVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUV

FRUVFRUVFRUVFQNCg==

UniqueAttachmentId:02

DescriptionofAttachmentCode:1

TypeofDocument:test-file2.txt

ActionableAttachment:3

AttachmentSize:2000

AttachmentData:QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQU

FBDQpCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCDQp

DQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDDQpERERE

REQNCkVFRUVFRUVFRUVFR

UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUUNCkZGRkZGRkZGRkZGRkZGRk

ZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkYNCkdHR0dHR0dHR0dHR0dHR0dHR0d

HR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0cNCkhISEhISEhISEhISEhISEhISEhISEhISEhI

SEhISEhISEhISEhISEhISEhISEhISEgNCklJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJS

UlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJDQpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSk

pKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSg0KS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0t

LS0tLS0tLS0tLS0tLS0tLSw0KTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExM

TExMTExMTExMTEwNCk1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU0NCk5OT

k5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk4NCk9PT09PT09PT0

9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT08NClBQUFBQUFBQUFBQUFBQUFB

QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQDQpRUVFRUVFRUVFRUVFRUVFRUVFRUVFR

UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRDQpSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSU

lJSUlJSUlJSUlJSUlJSUlJSUlJSUg0KU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1

NTU1NTU1NTU1NTU1NTU1MNClRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFR

UVFRUVFRUVFRUDQpBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB

QUENCkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkINC

kNDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0MNCkRERE

RERA0KRUVFRUVFRUVFRUV

FRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRQ0KRkZGRkZGRkZGRkZGRkZG

RkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRg0KR0dHR0dHR0dHR0dHR0dHR0dHR

0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHR0dHRw0KSEhISEhISEhISEhISEhISEhISEhISEhISE

hISEhISEhISEhISEhISEhISEhISEhISA0KSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUl

JSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUkNCkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpK

SkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKDQpLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS

0tLS0tLS0tLS0tLS0tLS0tLDQpMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTE

xMTExMTExMTExMTA0KTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTQ0KTk5

OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTg0KT09PT09PT09P

T09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PTw0KUFBQUFBQUFBQUFBQUFBQU

FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFANClFRUVFRUVFRUVFRUVFRUVFRUVFRUV

FRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVENClJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJ

SUlJSUlJSUlJSUlJSUlJSUlJSUlJSDQpTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NT

U1NTU1NTU1NTU1NTU1NTUw0KVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUV

FRUVFRUVFRUVFQNCg==

RequestDate:2008-09-28

ResponseDueDate:2008-10-13

FormNumber:UIB-290e

The State Pull Data File Model Connector expects two command line arguments:

 182

Table 66 – JAX-WS State Pull Model Connector Command Line Arguments

Model Connector Argument Definition

SI | EV This is the exchange that the file is

destined for:

SI – Separation Information

EV – Earnings Verification

Data File This is the fully qualified path and name of

the data file that contains the flat file

structure of the Response Collection

Query.

To execute the Model Connector from the command line, type:

o java org.uisides.client.state.StatePullClientDataFile SI|EV Data_File_Name

Sample Model Connector arguments are:

o java org.uisides.client.state.StatePullClientDataFile SI data/StateSIPullQuery.txt

where:

o SI is the exchange the file is destined for

Example State Pull File

#SOAP Header Values

From:ST

To:Broker

PullCollection:3

StateSOAPTransactionNumber:141690

#pull query values

#mandatory field, same as From value

StatePostalCode:ST

#optional fields based on PullCollection value

StateSOAPTransactionNumber:141690

BrokerRecordEffectiveDateFrom:2010-07-13T00:00:00

BrokerRecordEffectiveDateTo:2010-07-14T00:00:00

7.2.4.2 Employer/TPA Model Connector – JAX-WS

This sample Model Connector demonstrates how an employer/TPA can access the UI SIDES

Broker Web services using JAX-WS libraries.

The Model Connector was developed on JDK 1.5 (Java 5), but should also run on jdk 1.4 and

Java 6.

 183

The following main libraries are used (parts of Sun Microsystems Metro v1.4 release):

 JAX-WS RI 2.1.4.1

 JAXB RI 2.1.7.1

For convenience, this sample includes all necessary Eclipse project config files and can be

imported into an existing Eclipse IDE workspace. Eclipse 3.5 (Galileo) or later is required.

7.2.4.2.1 Sample Folders and Files

Root folder: sides-employer-client-jax-ws

 ./build.xml

Ant build file (requires Apache Ant 1.7.1 or later)

o Run “ant generate-jaxws-client” to generate JAX-WS client Java beans from

WSDL (creates src/org/uisides/client/state/generated classes)

o Run "ant build" to compile

 ./src

Contains:

o Java source code

o Log4j config file (log4j.properties)

o employer-ws-client-config.xml – the run time settings

o client-security-env.properties (JAX-WS security config file)

o META-INF/test-state.jks – keystore file with state key/certificate pair and Broker

certificate

 ./lib

Contains required library jar files. All libraries used are open-source Apache LGPL-style

libraries which can be freely distributed.

 ./schemas –

Contains UI SIDES XML schema files and Employer/TPA WSDL file

 ./data

Contains sample payload xml data files for Employer/TPA Post (EmpPost.xml)

 ./bin

Build destination folder for compiled Java class files.

7.2.4.2.2 Run Time Configuration

 184

The Model Connector has runtime configuration parameters that allow the employer/TPA to

setup its connector. The configuration is specified in a config xml file. The bean that specifies

these parameters is the configParams bean. All Java Application Model Connector classes use

the same configuration file, employer-ws-emulator-config.xml.

Table 67 - ConfigParam options

Parameter Name Applies To Definition

debugLogFilePath Post and Pull The fully qualified location of the debug log file; it

contains all the information in all the log files plus

detailed information on the state of the Model

Connectors workings.

resultsLogFilePath Post and Pull The fully qualified location of the results log file; it

contains all the information with the results from the

call to the Broker.

brptLogFilePath Post and Pull The fully qualified location of the brpt log file; it

contains all the information with the results from the

BRPT.

pdfFilePath Pull The fully qualified location of the PDF file and

attachments; it will contain all the requests received

in PDF form with all of the attachments decoded and

stored in the same directory

writeRequestsAsPDF Pull A boolean value that is “true” if the responses should

be printed out as the PDF and “false” otherwise.

requestFlatFilePath Pull The fully qualified location of the flat file containing

the Request information; it will contain all the

requests received in flat file format with all of the

attachments still encoded

writeRequestsAsFlatFile Pull A boolean value that is “true” if the requests should

be written in the flat file format and “false”

otherwise.

pullAllFiles Pull A boolean value that is “true” if the connector wants

the system to pull all files until the message code = 2

and “false” if the connector wants to make the call

repeatedly (so as to allow the connector more

control).

7.2.4.2.3 Web Services Configuration

The URL of the SIDES Broker Web services and REDACTED configuration is specified in the

client-security-env.properties file.

7.2.4.2.4 Execution

This Model Connector contains four top-level Java classes with a main() method:

o EmployerPostClient

 185

o EmployerPostClientDataFile

o EmployerPullClient

o EmployerPullClientDataFile

These files implement the employer/TPA Post and Pull operations respectively using JAX-WS.

7.2.4.2.4.1 EmployerPostClient/EmployerPullClient

The Employer Post Model Connector reads Response SOAP message payload content from

XML file in the ./data folder, sends it to the test SIDES Broker Web services URL, and log

Broker's response to the console.

The Model Connector expects five command line arguments:

Table 68 – JAX-WS Employer Post Model Connector Command Line Arguments

Model connector Argument Definition

SI | EV This is the exchange that the file is

destined for:

SI – Separation Information

EV – Earnings Verification

"FROM" SOAP header This is the unique id of the Employer/TPA

that is sending the file.

"TO" SOAP header This is the unique id of the State that the

file is destined for.

"EmployerTPAResponseFileGUID" SOAP

header

This is the Employer/TPA Response File

GUID.

The payload XML source file The XML file that contains the payload for

the call.

To execute the Model Connector from the command line, type:

o java org.uisides.client.employer.EmployerPostClient SI|EV FROM TO

EmployerTPAResponseFileGUID Payload_XML_File_Name

Sample Model Connector arguments are:

o java org.uisides.client.employer.EmployerPostClient SI BR999999999 ST

12345678901234567890123456789012 data/EmpPost.xml

where:

o SI is the exchange the file is destined for

o BR999999999 is the EmployerTest unique id

o ST is the unique id for StateTest UI SIDES endpoint

o 123456789012345678901234 is the EmployerTPAResponseFileGUID

 186

The EmployerPullClient reads Employer pull query SOAP message payload content from XML

file in the ./data folder, sends it to the test SIDES Broker Web services URL, logs Broker's

responses to the console, then prepares and sends Broker the acknowledgement of received pull

responses.

The Model Connector expects five or six command line arguments:

Table 69 – JAX-WS Employer Pull Model Connector Command Line Arguments

Model connector Argument Definition

SI | EV This is the exchange that the file is

destined for:

SI – Separation Information

EV – Earnings Verification

"FROM" SOAP header This is the unique id of the Employer that

is sending the pull query.

"TO" SOAP header Always “Broker” for Pull requests

“PullCollection” SOAP header 1 for regular pull, 2 for re-pull by

transmission number, 3 for re-pull by date

range

The payload XML source file The XML file that contains the payload for

the call.

EmployerTPASOAPTransactionNumber

(optional)

The value of the

“EmployerTPASOAPTransactionNumber”

SOAP header. Only required if the

pullCollection parameter is 2 (re-pull by

transaction number) or 3 (re-pull by date

range)

To execute the Employer Pull Model Connector from the command line, type:

o java –cp <classpath> org.uisides.client.employer.EmployerPullClient SI|EV FROM TO

PullCollection Payload_XML_File_Name [EmployerTPASOAPTransactionNumber]

Sample Model Connector arguments are:

o java –cp <classpath> org org.uisides.client.employer.EmployerPullClient SI

BR999999999 Broker 1 data/EmployerPullQuery.xml

where:

o SI is the exchange the file is destined for

o BR999999999 is the Employer Test unique id

o Broker is the “To” value for all Pull requests

o 1 is the PullCollection value indicating a regular pull

 187

7.2.4.2.4.2 EmployerPostClientDataFile/EmployerPullClientDataFile

These files implement the employer/TPA Post and the employer/TPA Pull/Pull Acknowledgment

Web service calls respectively that read ASCII files. See Figure 1 and Figure 2.

The EmployerPostClientDateFile/EmployerPullClientDataFile Model Connectors read message

payload content from ASCII flat files in the designated folder, send it to the test SIDES Broker

Web services URL, and log Broker's response to the console.

The Employer/TPA Post Data File Model Connector expects two command line arguments:

Table 70 – JAX-WS Employer/TPA Post Data File Model Connector Command Line Arguments

Model Connector Argument Definition

SI | EV This is the exchange that the file is

destined for:

SI – Separation Information

EV – Earnings Verification

Data File This is the fully qualified path and name of

the data file that contains the flat file

structure of the Separation Response(s).

To execute the Model Connector from the command line, type:

o java org.uisides.client.employer.EmployerPostClientDataFile SI|EV Data_File_Name

Sample Model Connector arguments are:

o java org.uisides.client.employer.EmployerPostClientDataFile SI data/EmployerSIPost.txt

where:

o SI is the exchange the file is destined for

Example Employer Response File

#SOAP Headers

To:ST

From:BR999999999

FileGuid:12345678901234567890123456789014

StateRequestRecordGUID:30000000000000000000000000004003

BrokerRecordTransactionNumber:2013889

SSN:560348477

ClaimEffectiveDate:2007-06-04

ClaimNumber:388620

 188

StateEmployerAccountNbr:0065560

CorrectedEmployerName:J C Penny

CorrectedStateEmployerAccountNbr:0123456789

CorrectedFEIN:987654321

OtherSSN:660348477

ClaimantNameWorkedAsForEmployer:Andy Wilson

ClaimantJobTitle:Customer Service Associate

SeasonalEmploymentInd:N

EmployerReportedClaimantFirstDayofWork:2007-10-11

EmployerReportedClaimantLastDayofWork:2007-10-14

EffectiveSeparationDate:2007-10-14

TotalEarnedWagesNeededInd:3

TotalWeeksWorkedNeededInd:3

AverageWeeklyWage:125.00

EmployerSepReasonCode:3

ReturnToWorkInd:N

WorkingAllAvailableHoursInd:N

NotWorkingAvailableHoursReason:NotWorkingAvailableHoursReason

LaborDisputeTypeInd:L

#Remuneration

RemunerationTypeCode:3

RemunerationAmountPerPeriod:999.99

RemunerationPeriodFrequencyCode:B

DateRemunerationIssued:2007-10-15

EmployerAllocationInd:N

AllocationBeginDate:2007-10-15

AllocationEndDate:2007-10-22

AverageNumberofHoursWorkedperWeek:40

MandatoryRetirementInd:N

MandatoryPension:N

ContributoryorNotContributoryClaimantInd:N

ClaimantPensionContributionPercent:100

DischargeReasonCode:3

FinalIncidentReason:FinalIncidentReason

FinalIncidentDate:2007-10-13

ViolateCompanyPolicyInd:N

DischargePolicyAwareInd:N

DischargePolicyAwareExplanationCode:V

#PriorIncidentOccurrence

PriorIncidentDate:2007-10-10

PriorIncidentReason:None

PriorIncidentWarningInd:Y

PriorIncidentWarningDate:2007-10-10

PriorIncidentWarningDescription:Verbal

WhoDischargedName:Andy Wilson

WhoDischargedTitle:Customer Service Associate

VoluntarySepReasonCode:3

HiringAgreementChangesCode:3

HiringAgreementChangesComments:HiringAgreementChangesComments

ClaimantActionsToAvoidQuitInd:N

ContinuingWorkAvailableInd:N

PreparerTypeCode:T

 189

PreparerCompanyName:J C Penny

PreparerTelephoneNumberPlusExt:9724312108

PreparerContactName:Ed A Jones

PreparerTitle:Project Manager

PreparerFaxNbr:9725312108

PreparerEmailAddress:edjones@jcpenneytest.com

The Employer/TPA Pull Data File Model Connector expects two command line arguments:

Table 71 – JAX-WS Employer/TPA Pull Model Connector Command Line Arguments

Model Connector Argument Definition

SI | EV This is the exchange that the file is

destined for:

SI – Separation Information

EV – Earnings Verification

Data File This is the fully qualified path and name of

the data file that contains the flat file

structure of the Request Collection Query.

To execute the Model Connector from the command line, type:

o java org.uisides.client.state.EmployerPullClientDataFile SI|EV Data_File_Name

Sample Model Connector arguments are:

o java org.uisides.client.state.EmployerPullClientDataFile SI data/StateSIPullQuery.txt

where:

o SI is the exchange the file is destined for

Example Employer/TPA Pull File

#SOAP Header Values

From:BR000000003

To:Broker

PullCollection:3

EmployerTPASOAPTransactionNumber:141690

#pull query values

#mandatory field, same as From value

UniqueID:BR000000003

#optional fields based on PullCollection value

EmployerTPASOAPTransactionNumber:141690

BrokerRecordEffectiveDateFrom:2010-07-13T00:00:00

BrokerRecordEffectiveDateTo:2010-07-14T00:00:00

7.2.5 BRPT – Business Rule Processor Tool

 190

There are two key data checks that enforce the quality of data transmitted in the SIDES system:

XSDs and Business Rules. The XSD validation is automatically provided by the J2EE or .Net

parser technology as part of the XML file generation and consumption process. However, the

SIDES data-related business rules require implementation via programming code and it is vital

that all connectors and the Broker implement these business rules precisely and correctly. The

purpose of the Business Rule Processor Tool is twofold:

 The Business Rule Processor Tool ensures a standard implementation and

interpretation of the SIDES business rules, not just for the current SIDES members,

but new participants in the future. For future participants, demonstrating the correct

implementation of the business rules is part of certifying their readiness to join

SIDES production operations.

 The Business Rule Processor Tool permits an Endpoint to test their business rule

programming code prior to connecting to the Broker. Uncovering errors during unit

test will be much less costly than discovering them during testing with the Broker.

Technically, the tool accepts a Data Transfer Object (“DTO”) or XML input and

returns the errors and associated codes that the Broker will provide without the need

to connect to the Broker. The tool has been developed in both .Net (C#) and Java 2

Platform, Enterprise Edition (“J2EE”) allowing all connectors to take advantage of it.

The Business Rule Processor Tool is a self contained jar file or a DLL (depending on the

language) that can be included in the connectors’ software project. It has exposed interfaces or

data transfer objects (DTOs) that a connector can invoke from within their code to test the

Broker business rules.

7.2.5.1 BRPT Interfaces

The Business Rule Processing Rule (BRPT) is accessed through twelve different methods, 3 for

Separation Information request, 3 for Separation Information response, 3 for Earnings

Verification request and 3 for Earnings Verification response, per language (.Net (C#) and Java).

The first way to access the BRPT is with an XML file. The connector can either have their

system write the XML to a file or the connector can build the file by hand with data out of its

system to verify the data’s integrity.

The second way to access the BRPT is with an XML Stream. This method allows the connector

to build the XML using their system in a form that it can use to send to the Broker but allows the

testing of the data to occur without having to have a working connection to the Broker.

The third way to access the BRPT is with a Data Transfer Object (DTO). This method allows

the connector to populate a DTO and verify the data meets SIDES specifications.

7.2.5.1.1 Java XML File

Table 72 – BRPT Java XML File

 191

Method Name Parameters Description

processEarningVerificationRequests String

requestsFilePath
Process the Earnings

Verification Requests

contained in the File

at requestFilePath.

processEarningsVerificationResponses String

responsesFilePath
Process the Earnings

Verification

Responses contained

in the File at

responseFilePath.

processSeparationRequests String

requestsFilePath
Process the Separation

Requests contained in

the File at

requestFilePath.

processSeparationResponses String

responsesFilePath
Process the Separation

Responses contained

in the File at

responseFilePath.

7.2.5.1.2 Java XML Construct

Table 73 – BRPT Java XML Construct

Method Name Parameters Description

processEarningVerificationRequests XMLStreamReader

requestsStreamReader
Process the Earnings

Verification Requests

contained within the

XMLStreamReader

requestStreamReader

processEarningsVerificationResponses XMLStreamReader

responsesStreamReade

r

Process the Earnings

Verification

Responses contained

within

XMLStreamReader

responsesStreamRead

er.

processSeparationRequests XMLStreamReader

requestsStreamReader
Process the

Separation Requests

contained within the

 192

Method Name Parameters Description

XMLStreamReader

requestStreamReader.

processSeparationResponses XMLStreamReader

responsesStreamReade

r

Process the

Separation Responses

contained within the

XMLStreamReader

responsesStreamRead

er.

7.2.5.1.3 Java Data Transfer Object

Table 74 – BRPT Java Data Transfer Object

Method Name Parameters Description

processEarningVerificationRequests StateEarningsVerifi

cationRequestCollec

tion requests

Process the Earnings

Verification Requests

contained within the

requests Data

Transfer Object.

processEarningsVerificationResponses EmployerTPAEarnings

VerificationCollect

ion responses

Process the Earnings

Verification

Responses contained

within the responses

Data Transfer Object.

processSeparationRequests StateSeparationRequ

estCollection

requests

Process the

Separation Requests

contained within the

requests Data

Transfer Object.

processSeparationResponses EmployerTPASeparati

onResponseCollectio

n responses

Process the

Separation Responses

contained within the

responses Data

Transfer Object.

7.2.5.1.4 .Net (C#) XML File

 193

Table 75 – BRPT .Net (C#) XML File

Method Name Parameters Description

processEarningVerificationRequests String

requestsFilePath
Process the Earnings

Verification Requests

contained in the File at

requestFilePath.

processEarningsVerificationResponses String

responsesFilePath
Process the Earnings

Verification Responses

contained in the File at

responseFilePath.

processSeparationRequests String

requestsFilePath
Process the Separation

Requests contained in

the File at

requestFilePath.

processSeparationResponses String

responsesFilePath
Process the Separation

Responses contained in

the File at

responseFilePath.

7.2.5.1.5 .Net (C#) XML Construct

Table 76 – BRPT .Net(C#) XML Construct

Method Name Parameters Description

processEarningVerificationRequests XMLReader

requestsStreamReader
Process the Earnings

Verification Requests

contained within the

XMLReader

requestStreamReader.

processEarningsVerificationResponses XMLReader

responsesStreamReade

r

Process the Earnings

Verification

Responses contained

within the

XMLReader

responsesReader.

processSeparationRequests XMLReader

requestsStreamReader
Process the

Separation Requests

contained within the

 194

Method Name Parameters Description

XMLReader

requestStreamReader.

processSeparationResponses XMLReader

responsesStreamReade

r

Process the

Separation Responses

contained within the

XMLReader

responsesReader.

7.2.5.1.6 .Net (C#) Data Transfer Object

Table 77 – BRPT .Net (C#) Data Transfer Object

Method Name Parameters Description

processEarningVerificationRequests StateEarningsVerifi

cationRequestCollec

tion requests

Process the Earnings

Verification Requests

contained within the

requests Data Transfer

Object.

processEarningsVerificationResponses EmployerTPAEarnings

VerificationRespons

eCollection

responses

Process the Earnings

Verification

Responses contained

within the responses

Data Transfer Object.

processSeparationRequests StateSeparationRequ

estCollection

requests

Process the Separation

Requests contained

within the requests

Data Transfer Object.

processSeparationResponses EmployerTPASeparati

onResponseCollectio

n responses

Process the Separation

Responses contained

within the responses

Data Transfer Object.

7.2.5.2 Return from Business Rules Processing Tool

The return from a call to the BRPT is an object type that contains the status information and

Error Codes that are passed back to the state and employer/TPA from the call to a Broker.

 195

For the Earnings Verification calls, it simulates the XML in the form of

StateEarningsVerificationRequestCollectionAcknowledgement and

EmployerTPAEarningsVerificationResponseCollectionAcknowledgement defined in the

Earnings Verification Request and Earnings Verification Response XSD, except it has already

been transformed into an object.

For the Separation Information calls, it simulates the XML in the form of

StateSeparationRequestCollectionAcknowledgement and

EmployerTPASeparationResponseCollectionAcknowledgement defined in the Separation

Request and Separation Response XSD, except it has already been transformed into an object.

7.2.5.3 Example Invocation of the Business Rules Processing Tool

The following code snippets give examples of the invocation of the Separation Information code

once the libraries are included in the project.

7.2.5.3.1 Java Example Invocation

7.2.5.3.1.1 State Java Example Invocation

// State

RequestBRProcessorImpl client = RequestBRProcessorImpl.getInstance();

// State Invocation with File Name s

StateSeparationRequestCollectionAcknowledgement requestDto =

client.processSeparationRequests((String) s);

// State Invocation with XML Stream Reader xsr

StateSeparationRequestCollectionAcknowledgement responseDto =

client.processSeparationRequests(xsr);

// State Invocation with DTO requests

StateSeparationRequestCollectionAcknowledgement responseDto =

client.processSeparationRequests(requests);

7.2.5.3.1.2 Employer/TPA Java Example Invocation

// Employer/TPA

ResponseBRProcessorImpl client = ResponseBRProcessorImpl.getInstance();

// Employer/TPA Invocation with File Name s

EmployerTPASeparationResponseCollectionAcknowledgement responseDto =

client.processSeparationResponses((String) s);

// Employer/TPA Invocation with XML Stream Reader xsr

EmployerTPASeparationResponseCollectionAcknowledgement responseDto =

client.processSeparationResponses(xsr);

// Employer/TPA Invocation with DTO responses

EmployerTPASeparationResponseCollectionAcknowledgement responseDto =

client.processSeparationResponses(responses);

 196

7.2.5.3.2 .Net Example Invocation

7.2.5.3.2.1 State .Net Example Invocation

// State

RequestBRProcessorImpl me = new RequestBRProcessorImpl();

// State Invocation with File Name fileNameObj

StateSeparationRequestCollectionAcknowledgement ack =

me.processSeparationRequests(fileNameObj.ToString());

// State Invocation with XML Reader xr

StateSeparationRequestCollectionAcknowledgement ack =

me.processSeparationRequests(xr);

// State Invocation with DTO requests

StateSeparationRequestCollectionAcknowledgement ack =

me.processSeparationRequests(requests);

7.2.5.3.2.2 Employer/TPA .Net Example Invocation

// Employer/TPA

ResponseBRProcessorImpl me = new ResponseBRProcessorImpl();

// Employer/TPA Invocation with File Name fileNameObj

EmployerTPASeparationResponseCollectionAcknowledgement ack =

me.processSeparationResponses(fileNameObj.ToString());

// Employer/TPA Invocation with XML Reader xr

EmployerTPASeparationResponseCollectionAcknowledgement ack =

me.processSeparationResponses(xr);

// Employer/TPA Invocation with DTO responses

EmployerTPASeparationResponseCollectionAcknowledgement ack =

me.processSeparationResponses(responses);

 197

8 F – CONNECT WITH THE CENTRAL BROKER: CERTIFYING CONNECTOR

SOFTWARE

This section provides details and discussion on the final testing process where the connector

must certify it is ready to interface with the production Central Broker. This is a critical section

as the connector software must pass the certification tests before being allowed to enter

production with SIDES.

8.1 Certification

To utilize the SIDES Central Broker platform, the state,

employer or TPA connector software must meet a set of

agreed upon business rule validation requirements. A key

requirement of SIDES is to ensure the quality and integrity of

data exchanged between connectors. To meet this

requirement, the Central Broker performs edit validation and

business rule validation on the data it receives, and connectors

must validate the data locally prior to submitting. This

section describes the process SIDES will use to certify that a

connector has correctly implemented its validations prior to

enabling access to the production UI SIDES Central Broker.

A connector may use different technologies and programming languages to create their client

program, therefore the certification process does not inspect the client source code or design, but

relies instead on a set of input data and expected outcomes to test compliance. The only client

design features required for connector certification is the client's ability to load and use test data

from XML files (provided by the Central Broker), and the ability to produce a text log file or

database records listing any validation errors detected in supplied data.

Connectors will be provided with test XML files and a spreadsheet listing error codes and

associated test files; there is one set each for state and employer/TPA connectors. XML file sets

will contain both State Request and Employer Response data files. Both valid and invalid data

files will be included.

The connector certification process consists of two steps. First, the connector performs

preliminary certification testing. During the preliminary certification of the connector, a state or

employer/TPA representative will use their connector to submit SIDES-provided test data to the

Central Broker test environment. After processing each input file, the certifier will inspect

client logs to validate that all expected validation errors were caught, and the certifier will

validate that clean data was successfully passed to the Central Broker. The tester also needs to

ensure that all Central Broker message codes or business rule error codes are processed

appropriately by the connector software or back-end system. Validation results are recorded in

the provided spreadsheet.

The final certification test is initiated after the connector completes their preliminary certification

test. The SIDES Broker Administrator will review the connector’s test results spreadsheet and

NOTE: In order to

perform the connector

certification test, a

connector must ensure

that their software is

developed with the

capability to allow the

injection of Certification

data. See Section 9.2.2.1

 198

all certification data files will be submitted to the SIDES Central Broker test environment. The

SIDES technical team will review the Central Broker reports to ensure expected results were

achieved and if so, the connector will be certified.

States, employers, and TPAs can use tools provided by the SIDES technical team to prepare for

certification. The tools include Model Connectors and the Business Rules Processing Tool

(BRPT), which provides a reference implementation for client-side validation. The BRPT tool is

implemented in both Java and C#. The BRPT graphical interface takes an XML data file as

input and validates it against the Central Broker business rules, reporting any errors. Connector

client developers can incorporate the BRPT source code as a data validation module into their

client program.

The Model Connectors built by the SIDES technical team are implemented in both Java and .Net.

The Model Connectors allow a connector to act as the opposite endpoint. As a result, the state,

employer or TPA may test their own connector software without having to rely on an outside

party to complete the round-trip exchange of information.

8.1.1 Certification Information

Connector certification is a required step that must be performed prior to production operations

or after any major change to the connector system. It is important that the connector software be

properly vetted so that valuable production time is not spent on items that could have been

prevented during connector testing.

Certification of the connector is achieved when:

 The expected results of the test data files match the actual test results from the connector.

 The connecter back-end processing is verified to handle / process all message codes or

business rule error codes.

 The connector handles duplicate processing.

The following process needs to be followed before a connector will be allowed to join SIDES in

production.

 Step 1 - Download the test suite of XML files and spreadsheets from the SIDES Website.

 Step 2 – Conduct preliminary connector certification testing.

o Step 2.1 – Run XML files through the connector.

o Step 2.2 – Compare the results obtained from your test system with the expected

results.

o Step 2.3 - Fill in the spreadsheet with the results of the test.

 Step 3 - Send the completed document to the SIDES Business Manager.

 Step 4 –Conduct final connector certification test.

 199

8.1.1.1 Step 1 - Download Test Suite

The test suite can be found on the SIDES Website at http://sides.itsc.org. Navigate to the

Connector Certification section to download the following files from the folder that contains the

certification files for the exchange you want to be certified for:

 Client_Certification_State_worksheet.xls

 Client_Certification_Employer-TPA_worksheet.xls

 Certification_Data.zip

The Client_Certification_State_worksheet.xls file (for state connectors) and

Client_Certification_Employer-TPA_worksheet.xls file (for employer/TPA connectors) list both

valid and invalid files to be used during client certification. The spreadsheets also list test files

for duplicate processing, post message codes, and pull message codes.

For certification of state connectors, states will test business rule error codes associated with

valid request files and invalid request files. Valid request files are expected to be processed by

the connector software without business rule errors and to be successfully posted to the Central

Broker. Corresponding valid response files will be pulled from the Central Broker to test the

Pull message codes. Invalid requests are expected to be rejected by the connector software,

trapping specified business rule errors. State connectors must self-certify duplicate response

processing, post / pull message code handling, and attachment processing.

For certification of employer or TPA connectors, employers or TPAs will test business rule error

codes associated with valid response files and invalid response files. Valid response files are

expected to be processed by the connector software without business rule errors and to be

successfully posted to the Central Broker. Corresponding valid request files will be pulled

from the Central Broker to test the Pull message codes. Invalid responses are expected to be

rejected by the connector software, trapping specified business rule errors. Employer or TPA

connectors must self-certify duplicate request processing, post / pull message code handling, and

attachment processing.

The state, employer or TPA tester will fill out the highlighted rows in both tabs of their

worksheet and return the worksheet to the SIDES Business Manager.

8.1.1.1.1 Data Files

The individual data files are located inside the ‘XML datasets’ directory structure when the Test

Suite files are unzipped.

For Earnings Verification, within the ‘XML datasets’ directory are sub-directories that are

broken into logical groups based on the ClaimantEmployerWorkRelationship (ER-15), the

EmployerEarningsCode (ER-16) and the Status Codes requested. Within each sub-directory are

the data files. Data files may contain from 1 to 5 requests and associated responses. Also, there

is a Business Rules Error folder which test all business rules corresponding and a Boundary

Cases folder that tests the limits of each field.

http://sides.itsc.org/

 200

For Separation Information, within the ‘XML datasets’ directory are sub-directories that are

broken into logic groups based on separation information reason codes (reason for separation).

Within each sub-directory are the data files. Data files may contain from 4 to 12 requests and

associated responses. These files test all business rules corresponding to the separation

information reason code.

A connector can manipulate the data file to ensure the data can be processed through the

connector software. For example, a state connector may be unable to process the provided

request data with the given StateEmployerAccountNbr and the connector may need to modify

the StateEmployerAccountNbr to successfully post the request to the Central Broker.

Similarly, a state connector may need to use their own StateRequestRecordGUID rather than the

one provided in the certification test data. When a connector prepares a response file, the

BrokerRecordTransactionNumber must be updated to match the

BrokerRecordTransactionNumber generated by the Central Broker. The SIDES team suggests

that connectors minimize changes to the certification test data to ensure the integrity of the

certification test.

The SIDES Central Broker requirements list a set of business rules, which State Request and

Employer/TPA Response data must satisfy prior to being transmitted by a connector. Each XML

file in the test suite contains a header that details the business rules being checked within the test

file.

Separation Request File Header

A sample header file for a state separation request XML data file follows below:

Table 78 – Separation Request File Header

Header

Category
Results

File Condition This indicates whether this is a valid file or an invalid file. This will tell the

tester if the expected result is a successful pass through or a failure and errors

should be logged.

 201

Header

Category
Results

Errors This indicates whether the file has no errors, an XSD error or a business rule

error. Business rules errors are listed individually. More than one business

rules can be tested in the file.

A-22 This indicates the value of A-22 from the Separation Information Standard

Format in the request. This field is singled out as a critical field because it

will influence the business rules on both the request and response.

Separation Response File Header

A sample header file for an employer / TPA separation response XML data file follows below:

Table 79 – Separation Response File Header

Header

Category
Results

File Condition This indicates whether this is a valid file or an invalid file. This will tell the

tester if the expected result is a successful pass through or a failure and errors

 202

Header

Category
Results

should be logged.

Errors This indicates whether the file has no errors, an XSD error or a business rule

error. Business rules errors are listed individually. More than one business

rules can be tested in the file.

A-22 in Request This indicates the value of A-22 from the Separation Information Standard

Format in the request. This field is singled out as a critical field because it

will influence the business rules on both the request and response.

Earnings Verification Request File Header

A sample header file for a state earnings verification request XML data file follows below:

Table 80 – Earnings Verification Request File Header

Header

Category
Results

File Condition This indicates whether this is a valid file or an invalid file. This will tell the

 203

Header

Category
Results

tester if the expected result is a successful pass through or a failure and errors

should be logged.

Errors This indicates whether the file has no errors, an XSD error or a business rule

error. Business rules errors are listed individually. More than one business

rules can be tested in the file.

E-20 thru E-28 This indicates the value of the Status Code from the Earnings Verification

Request fields E-20 thru E-28. These fields determine the Earnings

Verification Response fields that must be included in the Response.

E-33 This indicates the value of the Earnings Verification Response Comments

Indicator which tell the Employer/TPA whether they can have a comment

field to present further information.

Earnings Verification Response File Header

A sample header file for an employer / TPA earnings verification response XML data file

follows below:

 204

Table 81 – Separation Response File Header

Header

Category
Results

File Condition This indicates whether this is a valid file or an invalid file. This will tell the

tester if the expected result is a successful pass through or a failure and errors

should be logged.

Errors This indicates whether the file has no errors, an XSD error or a business rule

error. Business rules errors are listed individually. More than one business

 205

Header

Category
Results

rules can be tested in the file.

E-20 thru E-28 This indicates the value of the Status Code from the Earnings Verification

Request fields E-20 thru E-28. These fields determine the Earnings

Verification Response fields that must be included in the Response.

E-33 This indicates the value of the Earnings Verification Response Comments

Indicator which tell the Employer/TPA whether they can have a comment

field to present further information.

8.1.1.1.2 Business Rule Validation

The certification data files will test the entire suite of SIDES business rules for either the state

connector, or employer or TPA connector, which are specified below. When the connector

software is successfully tested against each business rule, the connector will then be certified for

production operations.

Note: In the headers of the XML certification test data files for Separation Information, BR###

will return the Error Code ###. For example, BR101will return Error Code 101 in the

acknowledgement.

Example – State Separation Request:

Table 82 – State Request Business Rules/Error Codes

Business Rules Error Code

BR101 101

BR102 102

BR110 103

Example – Employer/TPA Separation Response:

Table 83 – Employer/TPA Response Business Rules/Error Codes

Business Rule Error Code

BR201 201

BR202 202

 206

Business Rule Error Code

BR210 210

Note: In the headers of the XML certification test data files for Earnings Verification, EC###

will return the Error Code ###. For example, EC301will return Error Code 301 in the

acknowledgement.

Example – State Earnings Verification Request:

Table 84 – State Request Business Rules/Error Codes

Business Rules Error Code

EC301 301

EC310 303

Example – Employer/TPA Earnings Verification Response:

Table 85 – Employer/TPA Response Business Rules/Error Codes

Business Rule Error Code

EC401 401

EC410 410

8.1.1.2 Step 2 - Conduct Preliminary Connector Certification Testing

The bulk of the connector certification process takes place during the preliminary connector

testing step. During preliminary connector certification testing, the state, employer or TPA will

use their connector software and a Model Connector (one provided by the SIDES technical

support team or their own), and a test account to submit each certification test file through their

system to the SIDES Central Broker test environment.

For each certification test file that is submitted, the expected results (documented in the test file

headers) must be compared to the results returned from the SIDES Central Broker. Similarly,

all Central Broker message codes or error codes must be handled successfully by the connector

software or back-end system. Connectors must test duplicate processing and post / pull message

codes.

In the provided spreadsheets, test results must be documented. Specifically all highlighted cells

in both tabs of the worksheet must be filled out. If there are discrepancies such as the Enter Post

Message Code column is not equal to 1 (successfully posted to the Central Broker), the

 207

connector software engineers must investigate the issue and perform software remediation as

needed.

This process is completed for all certification test data files until all connector software results

match the expected results.

8.1.1.2.1 Step 2.1 – Run XML Files through the Connector

Each file within the test suite is an XML file that tests zero, one or more test conditions. The

valid files should pass through the connector software business rules and be passed on to the

Central Broker. The invalid files must be trapped by the connector software prior to delivery to

the Central Broker.

The injection point into the connector software is crucial to being able to perform this step in the

process. During design and development, the connector must have implemented an XML data

injection point that will accept XML files in the SIDES Standard format into the application

processing flow. The injection point to Post data to the Central Broker should be placed in the

connector software somewhere before the outgoing business rules are checked and the SOAP

message in completed. See Section 9.2.2.1

Example

An employer or TPA has chosen to test with the Separation Information response file

Code_3_15_Data_Set_2_Response.xml. This file is an invalid file and tests the following

business rules: BR210, BR212, BR215, BR217, BR237, BR257, and BR258. Upon execution

of the connector, the data file is injected to Post a separation response to the Central Broker.

The file should produce errors and not be transmitted to the Central Broker.

 208

8.1.1.2.1.1 Duplicate Records

During certification, a test must be run to determine

if the connector software can handle duplicate

records. Duplicate records can occur for many

reasons, and because the Broker consolidates the

records it passes on to a connector, the connector

software not only has to handle duplicate records in

separate SOAP messages, but also within the same

SOAP message. It is critical that the connector software be able to handle both cases without

fail.

NOTE: Because of the small chance that

a GUID will be repeated by different

States, employer/TPAs must ensure that

both the State Request Record GUID

AND the State abbreviation (or something

similar) be used when determining if a

record is a duplicate.

 209

There are data files created to test the connector for its ability to handle duplicates. The state has

a Duplicate_Response.xml file, and the employer/TPA has a Duplicate_Request.xml file. These

data files must be injected into the connector software to determine if the connector software

processes duplicate records appropriately. Since the SIDES technical support team cannot

validate connector back-end processing, the connector must self-certify its duplicate processing

functionality during internal testing. After connector testing, duplicate processing results must

be filled into the certification spreadsheet.

8.1.1.2.1.2 Message Codes

As part of the connector certification process, the connector software must be verified that it can

handle all message codes returned by the Central Broker in the SOAP message header. If the

connector software is coded correctly, message codes 2 (example of which is a file containing all

invalid records) and message codes 3 (file containing good and invalid records) should not be

encountered during certification testing with the Central Broker as the data files to be posted

are clean. Since the SIDES technical support team cannot validate connector back-end

processing, the connector must self-certify message codes. After connector testing, results must

be filled into the certification spreadsheet.

To support certification of message codes six (6) XML data files were produced. Three files will

be used to test requests (state posts) and three files to test responses (employer/TPA posts).

States will use the following files to test the message codes:

 Request_Message_Code_1.xml – file contains good records and returns a message code =

1

 Request_Message_Code_2.xml – file contains 1 bad record, which will return a message

code = 2

 Request_Message_Code_3.xml for the States – file contains 1 good record and 1 bad

record and it will return a message code = 3

For employers or TPAs:

 Response_Message_Code_1.xml– file contains good records and returns a message code

= 1

 Response_Message_Code_2.xml– file contains 1 bad record, which will return a message

code = 2

 Response_Message_Code_3.xml – file contains 1 good record and 1 bad record and it

will return a message code = 3

8.1.1.2.1.3 Attachments

As part of the connector certification process, the connector must verify that attachments

received via the Central Broker can be opened successfully and processed by the connector’s

 210

back-end system (for those exchanges that have attachments; otherwise skip to the next section).

Since the SIDES technical support team cannot validate connector back-end processing, the

connector must self-certify attachment processing. After connector testing, results must be filled

into the certification spreadsheet. To support certification of attachments, two (2) XML data

files were produced. States will certify attachment processing using the Valid_Response_1.xml

file, and employers will use Valid_Request_1.xml file.

8.1.1.2.2 Step 2.2 - Compare Results

After each certification test file is run, the test results should be accessible to the tester. These

results can be inside a test log file or stored in the database. The method does not matter to the

SIDES technical support team as this is connector design specific.

Once the tester has the test results from the connector software, the tester should compare it to

the expected results, which is contained in the header of the test file. The results must be an

exact match of the expected results. Test files that were created to fail business rules may contain

2 or more errors in them. It is crucial that ALL errors be caught. The connector software or

back-end software must also be evaluated to ensure that Central Broker error codes or message

codes have been handled correctly.

The tester should also determined if the connector software caught different or too many errors.

If this is the case, the errors should be examined to determine whether they should have been

actually caught. The SIDES technical support team should be contacted with the discrepancy if

the connector cannot determine the problem (or determines there is a problem in the file).

Example

In the above example, BR210, BR212, BR215, BR217, BR237, BR257, and BR258 should be

identified as errors. They must be the only errors identified, but all of them must be identified.

8.1.1.2.3 Step 2.3 - Fill in the Spreadsheet

After the test is completed and the results are satisfactory, the tester should fill in all highlighted

cells in both tabs of the worksheet. For the Valid Request / Response Test tab, fill in the cells

under the heading “Enter Post Message Code” and

“Enter Pull Message Code” with the appropriate

message code returned by the Central Broker. Since

all request / response file pairs are valid requests,

success can be determined if all request/response files

have a post message code = 1 and a pull message code =

1 and 2 (pulling from the Central Broker returns a 1 for

the file being returned and a 2 for the empty file).

NOTE: Each request / response file pair

must be individually tested (one at a time)

before going onto the next request /

response file pair. Otherwise, the Central

Broker will return a single response file

that has all responses posted aggregated

into a single file.

 211

For the duplicate processing test, fill in the columns “Performed Step? (Yes/No)”, “Did the State

System Identify Duplicates? (Yes/No)”, and “How are Duplicates Handled by the Back-End

System?”

It is the connector’s responsibility to test the processing of message codes returned by the

Central Broker. UI agencies, employers, and TPAs must self-certify their message code

processing. After running connector in-house testing, fill in the Post Message Code and Pull

Message Code tables. For the Post Message Code table, fill in the columns “Did the Connector

System Record and Handle the File -Level Message Code Correctly? (Yes/No)” and “Did the

Back-End System Update the Individual Records Correctly? (Yes/No)”. Complete the Pull

Message Code table by filling in the column “Was the File - Level Pull Message Code handled

Correctly? (Yes/No)”.

UI agencies, employers, and TPAs must self-certify their attachment processing (for those

exchanges that contain attachments). As part of the preliminary connector certification testing,

fill in the Attachment Processing table. Complete the columns “Was the Connector able to Open

the Attachment Successfully? (Yes/No)” and “Did the Back-End System Handle the Attachment

Correctly? (Yes/No)”. Entering “Yes” in these columns indicate that the attachments were able

to be opened successfully and the connector processed the attachments correctly.

For the Invalid Request Test tab, fill in the “Errors detected? (Yes/No)” and the “Back-end

Processing Handled Error? (Yes/No)” columns. In the “ Errors detected? (Yes/No)” column,

mark “Yes” if the actual output was different than the expected output. Mark “No” if the actual

and expected output is the same. The column “Back-end Processing Handled Error (Yes/No)”

must also be marked “Yes” if the connector or back-end system did not process the Central

Broker error code or message code successfully. Mark “No” if it did. Then continue on to the

next test.

8.1.1.3 Step 3 - Submit the Spreadsheet

After the tests are complete, the connector should have both tabs of the spreadsheet filled in and

the spreadsheet must be submitted to the SIDES Business Manager. Upon receipt of the

certification spreadsheet, the SIDES Business Manager and the connector will agree to the date

and time period to conduct the final SIDES certification test.

8.1.1.4 Step 4 - Conduct Final Connector Certification Test

When the connector has completed all preliminary certification tests, the final connector

certification test is performed.

During the final certification test, the connector will work in conjunction with the SIDES

technical support team to coordinate the re-submission of all files in the test suite to the Central

Broker test environment. The SIDES technical support team will work with the connectors to

stage data corresponding to their opposite connector. For example, state connectors will post

requests to the Central Broker test environment and the SIDES technical support team will

emulate the employer and post the matching response files to the Central Broker test

environment.

 212

The Central Broker technical team will perform validation of the certification test through

inspection of system logs and examination of file transfer and record detail reports. Certification

of duplicate processing, post message codes, and pull message codes will be self-certified by the

connector. Self-certification is based on the spreadsheet (provided to the SIDES Business

Manager), which documents the connector’s preliminary connector certification test results.

The final certification test will run over an agreed upon time period. During this certification

timeframe, the connector must not send any files to the Central Broker otherwise the

certification test results will be contaminated with bad data.

Upon successful certification test, the connector will be notified that the software may be

promoted into the SIDES production environment. If the certification test was not successful, the

connector must remediate the problems and re-execute the certification test.

 213

9 COMMON MISTAKES, THINGS TO REMEMBER, KEY DEVELOMENT

PITFALLS

9.1 Common Mistakes

9.1.1 Invalid To: and/or From:

One common mistake is to provide the ‘TO:’ and ‘FROM:’ SOAP headers in an incorrect

manner. The ‘TO:’ and ‘FROM:’ must be in the form described in Section 4.3- SOAP Custom

Headers.

Most of the instances of this type seen by the Central Broker are when the two fields have been

reversed.

Also, the ‘TO:’ on Pulls must be to the Broker and not an individual connector.

9.1.2 Connector Not a Participant

The Unique IDs presented in Section 4.2.1 - Unique ID are the only participants SIDES

recognizes.

The most common error in this category is using older Unique IDs. (There was a change in

Employer/TPA Unique IDs to accommodate the SIDES Employer Website.)

Another common error is to omit one or more digits on the employer/TPA Unique ID. It will

always be a ‘BR’ followed by nine digits for a UI SIDES Web services participant (as opposed to

an UI SIDES Employer Website participant – which is the nine-digit Federal Employer

Identification Number).

9.1.3 Invalid SOAP Action

Without a properly defined SOAP Action, the Central Broker does not know how to process the

incoming message. REDACTED The state, employer, or TPA connector must handle this

situation by its HTTP response timeout-handling routine.

9.1.4 Incorrect/Missing Security

As discussed in Section 5 - C – BUILD THE CONNECTOR: securing the message, security is

of paramount concern to the Broker. When first beginning the process to connect with the

Broker, the hardest problems encountered involve security. The connector should make sure that

it is following all the security preparations for the message. If the connector believes it is doing

everything correctly, then it should get in touch with the Broker team to help debug the issue.

 214

9.1.5 Central Broker Not Having Up-to-Date REDACTED Information

REDACTED

9.1.6 Date/Time on Server Not Accurate

The data and time on the server(s) that create the timestamp must be accurate.

REDACTED

9.1.7 Interpretation of Standard Format for Money Fields

Numeric fields defined in a standard format use a fixed-point representation of a number whose

total length is represented by the digits to the left of the decimal point and the fractional amount

is represented by the digits to the right of the decimal point. For example, the

TotalEarnedWages field in Separation Information is defined as numeric 15.2. This represents a

number (dollar amount) that can have 13 digits to the left of the decimal point and two digits to

the right of the decimal point. The largest number this field can contain is 9,999,999,999,999.99,

while the smallest number is 0.00.

9.1.8 State Employer Account Number

As per the SIDES standard formats, UI agencies must pass the state employer account number to

employers and TPAs. The StateEmployerAccountNbr is a character field with a maximum

length of 20 bytes that the employer or TPA to locate the separating employer in their automated

systems. When implementing SIDES, it is essential that the UI agency does not change the

StateEmployerAccountNbr that the employers or TPAs presently receives. For example, if an

employer or TPA presently receives a StateEmployerAccountNbr without a location code, please

ensure that location code is not appended to the StateEmployerAccountNbr. Otherwise, the

employer and TPA will not be able to respond to the request for separation information as the

employer cannot be looked up on their system.

9.2 Things to Remember

This section discusses some of the issues to be considered by a developer beyond the scope of

the connection to the Central Broker.

REDACTED

9.2.1 Existing Business System Modifications

 215

Key aspects of a state, employer, or TPA connector solution are having a data store that

conforms to the standard separation request and response formats, being able to collect the

requisite request data from the claimants to populate the request part of the data store, deliver the

standard response data collected from an employer/TPA via the Broker, and integrate

imaging/document management technology into the solution.

So, in addition to the communications portion of the connector system, a state connector must be

able to consume and generate XML-based data and interact with the state’s end users

(adjudicators) in terms of delivery of the data to them for processing. For Separation

Information., request data may be collected from claimants as part of an Internet Claim Filing

application that includes “intelligent” fact finding such that the appropriate question/data flows

are presented based on the separation reason chosen by the claimant, or, alternatively, this

separation data may be collected during the fact finding by a Call Center agent using screens or

Web pages consistent with the separations request format.

It is very likely that employers and TPAs will provide attachments as part of their responses (for

exchanges that include attachments). Therefore states will need to be able to consume these

attachments, and organize and route them in accordance with their non-monetary adjudication

processes.

Finally, as a template for the user interface for delivery of the separation data to state non-

monetary adjudication staff for processing, the SIDES Employer Website can be an aid, as all the

applicable question for each response data element has been defined as well as the page flows for

each of the possible 22 separation reasons.

If an agency currently has a paper system you will need to consider what to do with the XML

data when it arrives with you. In the worst case, it can be printed out and used in the current

manner as in your existing process, but with the benefits of better data quality, no postal delays,

and no postage costs.

If an agency has an existing electronic system, a state and employer or TPA will need to make

sure that the SIDES XML data is interfaced into the target system successfully.

9.2.2 Error Handling

Discovering errors in the data sent to it is one of the important functions performed by the

Central Broker. But having connectors send records with errors wastes throughput and ties up

valuable Central Broker resources. This is one of the reasons why it is important that each

connector implement the business rules/validation on their systems also.

If, by chance, an error is received from the Central Broker, then more than just a correction

should be made to that record. A review needs to take place on why that data was allowed to be

sent to the Central Broker in the first place, and any corrections made to the connectors system

must be made (or a global change needs to take place with all connector systems and the Central

Broker if an inherent flaw is discovered).

9.2.2.1 XML Injection

 216

To fully test the connector software and its interaction with the Central Broker, a set of XML

files has been created to simulate possible valid and invalid request and response files than may

be generated a member of SIDES. For the type of files the connector creates for a post, valid files

are to be passed on to the Central Broker for processing whereas invalid files are to be caught

by the connector software before the messaging takes place with the Central Broker. For the

type of files the connector accepts on a pull, valid files should be passed to the connectors’

backend and invalid files should be caught and flagged.

These XML files make up a certification package that must be run against the connector software

to validate that it is ready to run with the Central Broker in the production environment.

Therefore, these XML files must be able to be injected into the connector software at a point

before the business rules are checked within the connector software. States, Employers / TPAs

must be able to inject outgoing messages to the Central Broker, as the connector software must

check all their outgoing business rules.

 217

State/Employer/TPA Connector

Internet

Security Security

Business

Rules
Business

Rules

Data

Gathering

Data

Storing

Outgoing XML

Injection Point

Central

Broker

The XML files given as part of the Certification Process will contain all the information required

to determine what, if anything, is wrong with that file. A sample file is included below.

 218

9.2.3 Disaster Recovery

REDACTED

9.3 Key Development Pitfalls

9.3.1 Java – REDACTED

REDACTED

9.3.2 Spring-WS – Timestamp issue

REDACTED

 219

10 LIST OF FIGURES

Figure 1. Model Connector Post for ASCII Files ... 94

Figure 2. Model Connector Pull for ASCII Files .. 95

 220

11 LIST OF TABLES

Table 1 – Exchange Format .. 11

Table 2 – Separation Information Backfilled Data ... 20

Table 3 – Earnings Verification Backfilled Data .. 21

Table 4 - Unique IDs of Current Participating States ... 26

Table 5 - Unique IDs of Current Participating Employer/TPAs ... 26

Table 6 – Post-Acknowledgement Message Codes .. 28

Table 7 – Pull-Response Message Codes ... 28

Table 8 - Pull Acknowledgement Codes .. 28

Table 9 - State Post to Broker ... 31

Table 10 - State Post to Broker - SIDES Employer Website ... 31

Table 11 - Broker Acknowledgement to State Post .. 32

Table 12 - State Request to Broker (Regular Pull) ... 33

Table 13 - Broker Response to Request (Regular Pull) .. 34

Table 14 - State Acknowledgement to Broker (Regular Pull) .. 35

Table 15 - State Request to Broker (Re-Pull by StateSOAPTransactionNumber) 35

Table 16 - Broker Response to Request (Re-Pull by StateSOAPTransactionNumber)................ 36

Table 17 -State Acknowledgment to Broker (Re-Pull by StateSOAPTransactionNumber) 37

Table 18 - State Request to Broker (Re-Pull by Date) .. 38

Table 19 - Broker Response to Request (Re-Pull by Date) .. 39

Table 20 - State Acknowledgement to Broker (Re-Pull by Date) .. 40

Table 21 - Employer/TPA Post to Broker... 40

Table 22 - Broker Acknowledgement to Employer/TPA Post ... 41

Table 23 - Employer/TPA Request to Broker (Regular Pull) ... 42

 221

Table 24 - Broker Response to Request (Regular Pull) .. 43

Table 25 - Employer/TPA Acknowledgment to Broker (Regular Pull) 43

Table 26 - Employer/TPA Request to Broker (Re-Pull by

EmployerTPASOAPTransactionNumber) .. 44

Table 27 - Broker Response to Request (Re-Pull by EmployerTPASOAPTransactionNumber) 45

Table 28 - Employer/TPA Acknowledgment to Broker (Re-Pull by

EmployerTPASOAPTransactionNumber) .. 46

Table 29 - Employer/TPA Request to Broker (Re-Pull by Date) ... 47

Table 30 - Broker Response to Request (Re-Pull by Date) .. 48

Table 31 - Employer/TPA Acknowledgment to Broker (Re-Pull by Date).................................. 49

Table 33 - State Post to Broker ... 98

Table 34 - State Post to Broker - SIDES Employer Website ... 98

Table 35 - Broker Response to Request (Regular Pull) .. 100

Table 36 - State Post to Broker ... 105

Table 37 - State Post to Broker - SIDES Employer Website ... 106

Table 38 - Broker Response to Request (Regular Pull) .. 107

Table 39 - Employer Post to Broker ... 122

Table 40 - Broker Response to Request (Regular Pull) .. 124

Table 41 - Employer Post to Broker ... 128

Table 42 - Broker Response to Request (Regular Pull) .. 129

Table 43 - ConfigParam options ... 138

Table 44 – Spring State Post Model Connector Command Line Arguments 140

Table 45 – Spring State Pull Model Connector Command Line Arguments 141

Table 46 – Spring State Post Data File Model Connector Command Line Arguments 142

Table 47 – Spring State Pull Model Connector Command Line Arguments 145

Table 48 - ConfigParam options ... 148

 222

Table 49 – Spring Employer/TPA Post Model Connector Command Line Arguments............. 149

Table 50 – Spring Employer/TPA Pull Model Connector Command Line Arguments 150

Table 51 – Spring Employer/TPA Post Data File Model Connector Command Line Arguments

... 151

Table 52 – Spring Employer/TPA Pull Model Connector Command Line Arguments 153

Table 53 - AppSettings options... 156

Table 54 – .Net (C#) State Post Model Connector Command Line Arguments......................... 158

Table 55 – .Net (C#) State Pull Model Connector Command Line Arguments 159

Table 56 – .Net State Post Data File Model Connector Command Line Arguments 161

Table 57 – .Net State Pull Model Connector Command Line Arguments 164

Table 58 - AppSettings options... 166

Table 59 – .Net (C#) Employer Post Model Connector Command Line Arguments 168

Table 60 – .Net (C#) Employer Pull Model Connector Command Line Arguments 170

Table 61 – .Net Employer/TPA Post Data File Model Connector Command Line Arguments . 172

Table 62 – .Net Employer/TPA Pull Model Connector Command Line Arguments 174

Table 63 - ConfigParam options ... 176

Table 64 – JAX-WS State Post Model Connector Command Line Arguments 177

Table 65 – JAX-WS State Pull Model Connector Command Line Arguments 178

Table 66 – JAX-WS State Post Data File Model Connector Command Line Arguments 179

Table 67 – JAX-WS State Pull Model Connector Command Line Arguments 182

Table 68 - ConfigParam options ... 184

Table 69 – JAX-WS Employer Post Model Connector Command Line Arguments 185

Table 70 – JAX-WS Employer Pull Model Connector Command Line Arguments 186

Table 71 – JAX-WS Employer/TPA Post Data File Model Connector Command Line Arguments

... 187

Table 72 – JAX-WS Employer/TPA Pull Model Connector Command Line Arguments 189

 223

Table 73 – BRPT Java XML File ... 190

Table 74 – BRPT Java XML Construct .. 191

Table 75 – BRPT Java Data Transfer Object.. 192

Table 76 – BRPT .Net (C#) XML File ... 193

Table 77 – BRPT .Net(C#) XML Construct ... 193

Table 78 – BRPT .Net (C#) Data Transfer Object .. 194

Table 79 – Separation Request File Header .. 200

Table 80 – Separation Response File Header ... 201

Table 81 – Earnings Verification Request File Header .. 202

Table 82 – Separation Response File Header ... 204

Table 83 – State Request Business Rules/Error Codes ... 205

Table 84 – Employer/TPA Response Business Rules/Error Codes .. 205

Table 85 – State Request Business Rules/Error Codes ... 206

Table 86 – Employer/TPA Response Business Rules/Error Codes .. 206

